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In recent decades, architectural advances in multicore CPUs, GPUs, and specialized accelerators have
brought parallelism to the mainstream. Many applications today rely critically on parallelism for perfor-
mance. However, developing parallel software remains difficult, even for experts. Broadly speaking, the
difficulty is that programmers have to account for low-level (often architecture-specific) details to ensure
efficiency and scalability. High-level abstractions can help make parallel programming simpler and safer,
but existing abstractions often come with a performance cost. As a result, programmers resort to writing
low-level code, which is error-prone and can lead to subtle bugs.

To address the difficulty of parallel programming, my goal is to raise the level of abstraction at which
programmers can achieve high performance. Specifically, my research focuses on provably efficient im-
plementations of high-level languages, libraries, and systems. Such implementations use a variety of
techniques (e.g., compilation, code generation, automatic memory management, dynamic scheduling, etc.)
to automatically manage low-level issues and provide the programmer with provable guarantees on safety
and performance. My aim is to make fundamental advances in the design of new implementation techniques
for provable efficiency. Utilizing these advances, I aim to build new languages, libraries, and systems which
make it simpler and safer to develop high-performance parallel software.

My work has already made progress on two long-standing problems in this area: the performance of paral-
lel functional languages [8, 19, 5, 13, 6, 12], and the granularity control problem [14]. I describe these lines of
work in detail below. I also have developed provably efficient techniques for data-parallel programming [17]
and have done significant work in the area of dynamic scheduling [5, 21, 10, 15]. Schedulers play a critical role
in achieving provable efficiency by providing direct control over key performance properties. I have helped
develop schedulers which guarantee high utilization combined with space-efficiency [5], elasticity [21], and
fairness [10]. Recently, I have been working on scheduling for heterogeneous CPU-GPU architectures, with
the aim of automatically ensuring high utilization across different combinations of CPUs and GPUs [15].

In addition to my work on provably efficient implementations, I am interested generally in the areas of
programming languages, algorithms, and systems. I have worked on a variety of topics, including parallel
algorithms for dynamic trees and order maintenance [3, 2, 18], architectural support for parallel programs [20],
and static verification of parallel programs [9]. I also have experience with specific applications, especially
parallel simulation of quantum circuits [16] and scalable quantum circuit optimization [7].

My work has appeared at POPL, PLDI, PPoPP, ICFP, ESA, SPAA, and CGO, with two distinguished
papers [5, 13]; in addition, my dissertation [12] on the topic of efficient and scalable parallel functional
programming received a dissertation award from ACM SIGPLAN [11]. A significant contribution of my
PhD was the core implementation of MPL [4], an open-source compiler and run-time system with provably
efficient automatic memory management and scheduling. At Carnegie Mellon University, MPL is used to
help teach parallel algorithms to over 500 undergraduate students each year. Students use MPL to implement
sophisticated parallel algorithms which perform well, and are able to do so within a few weeks, with no prior
parallelism experience. Additionally, our research has shown that MPL is able to compete with low-level
programming techniques in terms of efficiency and scalability [6].

Moving forward, a number of challenges remain. High-level parallel languages today can provide limited
guarantees on safety and performance, but new implementation techniques are needed to effectively manage
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low-level factors. In the remainder of this statement, I describe two of my active lines of research, motivate
specific challenges that remain to be solved, and finally discuss my future research plans, working towards
the goal of making it easier to write and maintain parallel software.

Efficient and Scalable Parallel Functional Programming

Researchers have argued for decades that functional programming techniques can make parallel programming
simpler and safer. Functional programming languages provide control over side-effects, enabling programmers
to easily develop programs with no race conditions or subtle concurrency bugs. Additionally, functional
languages support higher-order functions (e.g., map, reduce, and filter on collections of data) which
can be used to express parallel algorithms elegantly and succinctly. However, parallel functional languages
historically have underperformed in comparison to their imperative and procedural counterparts. The reason
is that functional languages typically allocate data at a high rate, and this rate only increases with parallelism,
causing existing memory management techniques to suffer high overheads under the increased pressure.

In this line of work [8, 19, 5, 13, 6, 12, 9], we developed new implementation techniques for parallel
functional languages and demonstrated that these languages can deliver the same efficiency and scalability
as lower-level languages. The key is a memory property called disentanglement, which limits communi-
cation between concurrent tasks and makes it possible for individual tasks to perform garbage collection
independently, in parallel, with nearly no additional synchronization. We identified this disentanglement
property and proved that it is guaranteed in race-free programs. This result implies that disentanglement
is directly applicable to parallel functional programs, which are race-free by default. More generally, we
empirically showed that disentanglement is overwhelmingly common, even when concurrent data structures
(e.g., lock-free hash tables) are used under the hood for improved efficiency.

Utilizing disentanglement, we designed and implemented a provably efficient memory manager for a
parallel version of the Standard ML language. Our implementation, called MPL [4], consists of a compiler
and run-time system which work together to translate high-level parallel functional programs into executables
with excellent multicore performance. Across a wide range of benchmarks [1], we have shown that MPL can
outperform industry-standard memory-managed languages (such as Java and Go) and can compete with the
performance of hand-optimized code written in low-level languages such as C/C++.

Automatic Parallelism Management and Granularity Control

Many task-parallel languages support fine-grained parallelism where the programmer can safely spawn mil-
lions of small tasks per second without harming performance. However, even fine-grained parallelism has
limits. If the programmer is not careful, they might accidentally spawn too many tasks and cause overall
performance to degrade significantly, with overheads in practice of as much as 10-100x.

This is broadly known as the granularity control problem, where the granularity of tasks refers to their
“size”, i.e., the amount of work each task performs. Programmers are expected to manually control granular-
ity, to limit the overheads of task creation and management. However, this poses a number of problems: (1)
manual granularity control is error-prone and time-consuming for the programmer; (2) granularities can de-
pend on architecture-specific factors and therefore may not be portable across different machines; (3) manual
granularity control is largely incompatible with high-level programming techniques, especially higher-order
parallel functions, where the “correct” granularity might depend upon function arguments. For example, in
the code map(f,A) which applies a function f in parallel across an array A, the “correct” granularity for the
map depends on the complexity of the function f.

My recent work [14] makes progress on this granularity control problem. In our approach, the program-
mer does not control granularity; instead, the programmer expresses all opportunities for parallelism, and
relies on the language implementation to figure out exactly when and where to spawn tasks. Our primary
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contribution is a new implementation technique which avoids the cost of task creation by default. Specif-
ically, our technique embeds each opportunity for parallelism directly into the call-stack. Then, during
execution, a dynamic scheduler inspects the call-stacks and judiciously exposes only as much parallelism as
necessary to ensure efficiency and scalability. In this way, the compiler and run-time system work together
to automatically manage parallelism, providing the programmer with provable guarantees on efficiency
and scalability.

We implemented this approach by extending the MPL compiler [4], and found that the approach is
effective in practice. Existing language implementations do not perform well on programs without manual
granularity control; in contrast, our approach is able to execute these programs with low overhead (less
than 2x on average) and good scalability. Furthermore, we show that the technique reduces the performance
benefits of manual granularity control significantly, making progress towards eliminating the need for manual
granularity control in general.

Future Work

To make high-performance parallel programming simpler, safer, and more efficient, a number of challenges
remain to be solved. Here I outline a few specific challenges that I plan to address in my research.

Closing the performance gap. Although high-level languages are simpler and safer to use than low-level
languages, the reality is that this simplicity and safety often comes with a performance cost. That is, in the
current state of the art, there is an apparent performance gap between high-level and low-level languages.
I believe this gap is not fundamental, but rather a reflection of the limitations of current implementation
techniques. In my future work, I aim to develop the necessary techniques to close the gap.

One factor that contributes to the gap has become clear: in high-level languages with automatic memory
management, programmers do not have sufficient control over memory representation and layout. This can
impact data locality and lead to significant overheads in terms of time and space usage. For example, the most
natural representation of a collection of 2-dimensional geometric points might be an array of tuples/structs,
but many languages will choose to store the elements (the tuples) indirectly through pointers, causing
additional cache misses. It is sometimes possible to work around these issues by rewriting the program, but
this is tedious and defeats the purpose of high-level language features.

I believe this particular problem can be solved while retaining the important safety and performance
guarantees of automatic memory management, and I intend to tackle this challenge in future work. More
generally, I plan to identify and address other sources of overhead which contribute to the performance gap
between high-level and low-level languages.

Managing concurrency bugs. It is notoriously difficult for programmers to identify and fix concurrency
bugs, especially data races, which are common and problematic. Roughly speaking, the problem is that if
programmers are not careful to “properly synchronize” concurrent accesses to shared memory locations, then
many compilers and run-time systems are unable to provide any guarantees. The behavior of the system
can then become completely unpredictable; for example, the program could unexpectedly crash, or worse,
the program could silently continue with corrupted data and have harmful effects. Programmers therefore
go to great lengths to ensure that their programs are free of data races.

Ideally, a language implementation should be able to prevent data races entirely, but it is not clear how
to accomplish this goal. Complex type systems (e.g. based on ownership and borrowing) can help avoid
data races, but such type systems are highly restrictive and escape hatches are prevalent (for example,
in the Rust language, programmers are able to circumvent the type system with code marked unsafe).
Purely functional programming is another avenue towards a potential solution, but the problem with purely
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functional programming is that it disallows in-place updates, which are an essential ingredient of many high-
performance data structures and algorithms. Data races can also be prevented using atomic operations, but
these operations incur additional overhead at run-time (e.g., to execute memory fences), which can degrade
performance.

It is important to solve this problem, because data races undermine one of the primary goals of high-level
languages: provable safety. I believe this problem can be solved, and that a solution will likely involve a
combination of both static (i.e., compile-time) and dynamic (i.e., run-time) techniques.

Programming heterogeneous hardware. Modern architectures consist of many heterogeneous compo-
nents which are specialized for different tasks, and there appears to be a trend towards greater specialization
and heterogeneity. When targeting heterogeneous hardware, programmers face not only the challenges of
parallel programming, but also issues of scheduling data and computation onto processors with different
performance characteristics. It is difficult to determine an efficient mapping, in part because the mapping
might depend upon dynamic factors such as the current load of the system. Additionally, after tuning soft-
ware to perform well on a particular architecture, it is unlikely that the same software will also perform well
on a different architecture, and therefore the software may need to be retuned and/or rewritten to run on a
different machine or cluster.

In recent work, I have been developing new programming and scheduling techniques to automatically
map computations onto heterogeneous CPU-GPU hardware, with the goal of guaranteeing high utilization,
automatically, across different combinations of CPUs and GPUs [15]. This work shows promising results;
in future work, I plan to continue this line of work, and more generally to develop new techniques which
simplify the challenge of programming heterogeneous devices.
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