
How to Thrive
as a PhD Student

Sam Westrick
PLMW 2023

Seattle

1

2

No Right or Wrong Way

1

2

3

4

🤷

3

(Under➞)Grad Mentality
- undergrad: classes are necessary

- grad: classes??

- unavailable: rapidly approaching frontier of human knowledge

- if available, an investment

- be aware of time+energy expenditure
- be aware of your personal reward system

- constant small rewards?

- infrequent big rewards?

4

😓 💆
🎉 😓 😓 💆

🎉

💆
🎉 😓 💆

🎉
💆
🎉 😓

.😓 💆
🎉

5

😓 😓 😓

😓 😓 💆🎉

6

Meaningful Measure of Daily Progress
- if deadline is 6 months away, how to measure progress?

- daily progress ≠ publish paper / solve problem / prove theorem / fix bug

- daily progress = time+energy expended

- “I got stuck on the proof yesterday. Today I spent X hours on it, but still stuck”

- daily progress? YES

🎉💆
- feel tired? done for today.

- Go eat some food!
- Go for a walk!

- Go play games!

- deadline arrives and you’re not done? that’s fine.

7

Find Your Hours
- focus hours:

- e.g. complex proof, 
debug something nasty, 
paper meat

- working hours:

- e.g. respond to emails, 

scheduling, meetings

- outside of work/focus hours, you have a job:

DON’T WORK

focus

work

rest
have fun

8

- before spending a lot of time on something, ask yourself:

- is this personal enrichment?

- is this “just engineering”?

- is this research?

What Kind Of Work Is This?

9

Projects Projects Projects
- don’t over-invest in one project

- 2 projects is nice!

- lead one

- help out with another

- if stuck on one, work on another

- create environments for incremental progress

- running notes, the braindump document

- “just make the damn repo”

- EMBRACE THE CHAOS

10

Managing Expectations
- perfectionism can be...

- useful: get good work done

- rewarding: feel pride in good work done

- unhealthy: impose unrealistic expectations on self

- toxic: impose unrealistic expectations on others

- it’s okay to make mistakes

- warm fuzzy typos

me, circa 2018. advisor’s office.

one week before deadline. 

(dramatized)

11

Response Repertoire

- don’t know how to answer a question?

- no problem. just be honest:

- “We haven’t looked into that yet, but we plan to.”

- “I’ve thought about this, and couldn’t figure out X.”

- “I’m not familiar with that. Could you send me more info about it later?”

your own journey is valid

12

Writing Tips
- no two people will read your paper the same way

- reader A: skims to get the gist

- reader B: introduction, conclusion... done

- reader C: a bit from each section, out-of-order

- reader D: research paper? Nah, this is a novel.

- goal: give each reader something to keep them going

115

Entanglement Detection with Near-Zero Cost

SAMWESTRICK, Carnegie Mellon University, USA

JATIN ARORA, Carnegie Mellon University, USA

UMUT A. ACAR, Carnegie Mellon University, USA

Recent research on parallel functional programming has culminated in a provably e!cient (in work and space)
parallel memory manager, which has been incorporated into the MPL (MaPLe) compiler for Parallel ML and
shown to deliver practical e!ciency and scalability. The memory manager exploits a property of parallel
programs called disentanglement, which restricts computations from accessing concurrently allocated objects.
Disentanglement is closely related to race-freedom, but subtly di"ers from it. Unlike race-freedom, however,
no known techniques exists for ensuring disentanglement, leaving the task entirely to the programmer. This
is a challenging task, because it requires reasoning about low-level memory operations (e.g., allocations and
accesses), which is especially di!cult in functional languages.

In this paper, we present techniques for detecting entanglement dynamically, while the program is running.
We #rst present a dynamic semantics for a functional language with references that checks for entanglement
by consulting parallel and sequential dependency relations in the program. Notably, the semantics requires
checks for mutable objects only. We prove the soundness of the dynamic semantics and present several
techniques for realizing it e!ciently, in particular by pruning away a large number of entanglement checks.
We also provide bounds on the work and space of our techniques.

We show that the entanglement detection techniques are practical by implementing them in the MPL
compiler for Parallel ML. Considering a variety of benchmarks, we present an evaluation and measure time and
space overheads of less than 5% on average with up to 72 cores. These results show that entanglement detection
has negligible cost and can therefore remain deployed with little or no impact on e!ciency, scalability, and
space.

CCS Concepts: • Software and its engineering→Garbage collection; Parallel programming languages;
Functional languages; • Theory of computation→ Parallel algorithms.

Additional Key Words and Phrases: disentanglement, parallelism, functional, memory management

ACM Reference Format:
Sam Westrick, Jatin Arora, and Umut A. Acar. 2022. Entanglement Detection with Near-Zero Cost. Proc. ACM
Program. Lang. 6, ICFP, Article 115 (August 2022), 32 pages. https://doi.org/10.1145/3547646

1 INTRODUCTION

With the mainstream availability of multicore computers, parallel programming today is important
and relevant but remains to be challenging. A key concern is race conditions, which typically raise
serious correctness issues. Because pure functional programs are free of data races, functional
programming languages can make parallel programming simpler and safer. As a result, many
parallel functional programming languages have been developed going back to the 1980’s, including
multiLisp [Halstead 1984], Id [Arvind et al. 1989], NESL [Blelloch 1996; Blelloch et al. 1994], several
forms of parallel Haskell [Hammond 2011; Li et al. 2007; Marlow and Jones 2011; Peyton Jones

Authors’ addresses: Sam Westrick, Carnegie Mellon University, USA, swestric@cs.cmu.edu; Jatin Arora, Carnegie Mellon
University, USA, jatina@andrew.cmu.edu; Umut A. Acar, Carnegie Mellon University, USA, umut@cs.cmu.edu.

© 2022 Copyright held by the owner/author(s).
2475-1421/2022/8-ART115
https://doi.org/10.1145/3547646

Proc. ACM Program. Lang., Vol. 6, No. ICFP, Article 115. Publication date: August 2022.

This work is licensed under a Creative Commons Attribution 4.0 International License.

115:4 Sam Westrick, Jatin Arora, and Umut A. Acar

one vertex identi!er per object. To reduce this space cost, we show how to group allocations by
sharing a single vertex identi!er amongst many objects allocated by the same task. This reduces
the additional space cost from! (") down to approximately! (min(" ,#/$)), where# is the total
size of memory and $ is a chunking factor. The quantity#/$ therefore represents the number of
“heap chunks” used to store objects, which is typically much smaller than " in practice.

Our semantics paves the way for an implementation, albeit an ine"cient one. The idea is to
represent the computation graph using a well-known “series-parallel order maintenance” data
structure for checking the precedence relation needed for entanglement checks. Series-parallel
order maintenance, or SP-order maintenance for short, is well-studied in the race detection literature
and many solutions can achieve e"ciency and scalability [Bender et al. 2004; Cheng et al. 1998;
Feng and Leiserson 1997; Fineman 2005; Mellor-Crummey 1991; Raman et al. 2010, 2012; Utterback
et al. 2016; Xu et al. 2020]. In practice, however, the constant factors for precedence queries are
signi!cant: we completed such a direct implementation and measured that it can incur as much as
2x overhead, primarily due to the cost of precedence queries.
As a !nal step, we optimize away many of the SP-order maintanence operations by observing

that typically, only a small number of mutable objects can lead to entanglement at any moment.
We refer to such objects as entanglement candidates. Throughout execution, we explicitly track the
set of candidates and only perform graph queries on these objects; all queries on others are pruned
away. We prove that this optimization does not lead to an asymptotic impact on our bounds in
the worst case, and show empirically that it can dramatically improve e"ciency and scalability by
eliminating many SP-order maintenance operations.

We present an implementation of the proposed approach for entanglement detection by extending
theMPL (MaPLe) compiler for the Parallel ML language. To ensure both e"ciency and safe execution,
our implementation is integrated closely with the memory management system, including read and
write barriers, as well as the garbage collector itself. We evaluate our techniques by considering a
suite of 23 parallel benchmarks, many of them ported from state-of-the-art C/C++ benchmark suites.
All of these benchmarks are naturally disentangled, which our detector con!rms. Our evaluation
shows low time overheads in practice, typically around 5% or less on both 1 and 72 processors. In
comparison to a sequential baseline (with no parallelism or entanglement detection), execution
with entanglement detection achieves between 10 and 63x speedup on 72 processors. Furthermore,
the space overhead of entanglement detection is negligible in almost all cases. These experiments
collectively demonstrate that entanglement detection has nearly zero cost in terms of time, space,
and scalability.

In summary, the contributions of this paper include the following.

• The formal semantics of an entanglement detector that requires entanglement checks only at
(mutable) dereference operations and its proof of correctness (Section 3).

• Asymptotic analysis establishing work and space bounds on our entanglement detection
algorithm (Section 3.5).

• A technique for pruning a signi!cant number of computation graph queries needed to
support entanglement detection, resulting in dramatic performance improvements in practice
(Section 4)

• An implementation in Parallel ML that extends the scheduler and memory management
system of the MPL (MaPLe) compiler (Section 5).

• A performance evaluation, demonstrating low overhead and good scalability (Section 6).

Proc. ACM Program. Lang., Vol. 6, No. ICFP, Article 115. Publication date: August 2022.

115:6 Sam Westrick, Jatin Arora, and Umut A. Acar

1 // initialize strings ![" .. #] (exclusive at #)
2 fun init(!: string array, ": int, #: int) =

3 if # − " = 0 then () else
4 if # − " = 1 then !["] := Int.toString " else
5 let $ = "(" + #)/2# in
6 (init(!, ",$) ‖ init(!,$, #)); ()

7 let ! = Array.allocate 3 in
8 let _ = init(!, 0, 3) in
9 let (%,&) = (![0]^![2] ‖ ![1]^![2]) in
10 print (% ^ &)

Fig. 1. Example disentangled program.

to a processor—may be collected with a compacting Cheney-style collection, without needing to
synchronize with other processors. Only a single task is paused to perform a leaf collection (namely,
the task of the leaf being collected).

In the MPL implementation, GCs are supported by lightweight snapshots, remembered sets, and
a write barrier [Arora et al. 2021; Westrick et al. 2020]. Like any GC implementation, the details are
intricate; for the purposes of this paper, the important detail is that both correctness and e!ciency
of GC rely heavily on the lack of cross-pointers.

Entanglement can make the GC go wrong. Entanglement can cause incorrect and unpredictable
behavior in a memorymanagement systemwhich assumes disentanglement. The problem is that the
garbage collector might create a dangling pointer during execution by missing a cross-pointer. For
example, if the collector reclaims an object that was reachable by some other task via a cross-pointer,
then the cross-pointer will be left dangling. Alternatively, the collector might relocate an object
(by making a copy and reclaiming the old version) to compact space and combat fragmentation.
In doing so, the collector will update all pointers to point to the new location, but a cross-pointer
might be left pointing to the old version. Either way, all bets are o": if the program attempts to
read a dangling pointer, it could crash, or (worse) return an incorrect result.

2.2 Disentanglement Example

Figure 1 presents an example of a disentangled program, which we discuss in detail below. Our
goal here is to illustrate the nuances of disentanglement, including its interaction with determinacy
races, which can be tricky to reason about. Although determinacy races can cause entanglement,
not all determinacy races are problematic. In Section 2.3, we present an example where races are
utilized for e!ciency in parallel programs in a manner that is compatible with disentanglement.
The code in Figure 1 operates on an array of strings, where each string is heap-allocated and

immutable. We write ('1 ‖ '2) to execute '1 and '2 in parallel, wait for both to complete, and return
their results as a tuple. The operation ^ denotes string concatenation.

The example de#nes a function init (lines 2-6) which in parallel initializes an array ! between
two indices " and # by storing a freshly allocated string at each index. On line 8, the example calls
init on an array of size 3, which results in contents ["0","1","2"]. It then in parallel concatenates
a few elements of the array, resulting in % ="02" and & ="12" (line 9). Finally, it concatenates % and
& and prints out "0212" (line 10). As written, the code is free of determinacy races.

Example: disentangled. As presented in Figure 1, this code is disentangled. There are multiple
ways we could go about showing this. One way is to observe that the code is determinacy-race-free,
which ensures disentanglement [Westrick et al. 2020]. Another approach is to consider all of the
allocations that occur in the computation, and where each allocated objects is used. The allocations
of this computation include: the array !, the three strings stored in the array (at each !["]), and
the two strings allocated in parallel on line 9. The array ! is allocated before everything else in the
computation, so it is always safe to use. The strings stored in the array are allocated by the calls

Proc. ACM Program. Lang., Vol. 6, No. ICFP, Article 115. Publication date: August 2022.

115:22 Sam Westrick, Jatin Arora, and Umut A. Acar

3

6S
S

S

P P
P
S

PS

P

S P
S P

P

P

Fig. 11. Speedups ofMPLΔ in comparison to sequential
baseline (which has no parallelism or entanglement
detection).

Table 2. Comparison (overheads OV and speedups
SU) with sequential baseline. Times are in seconds.

! = 1 ! = 72

Base OV SU

"! "1 "1/"! "72 "!/"72

bfs-tree 9.71 20.5 2.11 .442 22
centrality 11.5 16.0 1.39 .426 27

dedup-strings 2.50 5.52 2.21 .122 20
delaunay 9.50 9.18 0.97 .335 28

dense-matmul 1.99 2.79 1.40 .048 41
game-of-life 1.57 1.73 1.10 .067 23

grep 1.28 2.05 1.60 .038 34
low-d-decomp 5.85 8.37 1.43 .392 15
msort-strings 1.33 2.77 2.08 .058 23
nearest-nbrs 1.11 1.54 1.39 .047 24

nqueens 1.30 1.61 1.24 .029 45
palindrome 1.61 1.69 1.05 .032 50

primes 1.75 7.56 4.32 .120 15
quickhull 2.00 3.40 1.70 .110 18

range-query 13.3 15.4 1.16 .248 54
raytracer 2.38 3.30 1.39 .058 41

reverb .955 1.31 1.37 .041 23
seam-carve 12.1 16.2 1.34 .827 15

skyline 2.51 7.57 3.02 .251 10
su!x-array 4.51 5.74 1.27 .115 39
tinykaboom 2.63 2.48 0.94 .042 63

tokens 1.53 1.86 1.22 .042 36
triangle-count 2.82 4.57 1.62 .191 15

6.2 Comparison with MPL

We compare withMPL to con"rm our theoretical results, showing little overhead and excellent
scalability as the number of cores increase.

Entanglement detection overheads are small. Table 1 shows results on 1 and 72 processors. Columns
!1 and !72 show the run-time for MPL and MPLΔ, which the additional cost of MPLΔ relative to
MPL shown as percentage for each quantity. Observe that the MPLΔ times are usually within ±5%
of MPL. 18 out of 23 benchmarks have less than 2% time overhead, and we observe a max time
overhead of 7% in only two cases on 72 processors. On average across all benchmarks, the time
overhead is approximately 1% on both 1 and 72 processors.

Entanglement detection scales well. On both 1 and 72 processors, we observe similar time overheads
across all benchmarks. Entanglement detection therefore has no noticeable impact on scalability.

Space overheads are small. Columns "1 and "72 show the space usage for MPL and MPLΔ, with
the additional cost ofMPLΔ relative toMPL shown as percentage for each quantity. For both 1-core
and 72-core runs, there is almost no noticable space overhead. Only one benchmark (tinykaboom)
registers above 10% space overhead, but only for sequential runs, where the overall footprint
is small: while MPL uses approximately 9 MB, our MPLΔ uses 11 MB. Entanglement detection
therefore appears to have a small constant space overhead. At scale, with memory on the order of
gigabytes, this overhead is negligible.

Proc. ACM Program. Lang., Vol. 6, No. ICFP, Article 115. Publication date: August 2022.

Entanglement Detection with Near-Zero Cost 115:27

MultiMLton [Sivaramakrishnan et al. 2014; Ziarek et al. 2011], SML# [Ohori et al. 2018], multicore
OCaml [Sivaramakrishnan et al. 2020], and prior work on disentanglement and MPL [Acar et al.
2015; Arora et al. 2021; Guatto et al. 2018; Raghunathan et al. 2016; Westrick et al. 2020]. There
has also been signi!cant progress on parallel and concurrent Haskell [Chakravarty et al. 2007;
Keller et al. 2010], including work on memory management techniques [Marlow and Jones 2011].
Our work di"ers from prior work in its emphasis on theoretical guarantees on e#ciency and
implementations that can match the bounds in practice.
The work presented in this paper and most of the work on parallel programming languages

consider compute-intensive jobs, where the main performance metric is throughput. There has
recently been interest in “responsive parallelism” which include a broader class of jobs that mix
compute-intensive and interactive tasks. The goal in responsive parallelism is to maximize through-
put while also minimizing latency for the interactive tasks [Muller et al. 2020, 2017, 2018, 2019].
Responsive parallelism requires new scheduling algorithms that mix competitive and cooperative
scheduling [Muller and Acar 2016; Singer et al. 2020b].
We note that even though disentanglement and entanglement have so far been applied to

functional programming languages, they are fundamentally a language-agnostic property, and thus
could be applied to procedural languages.

8 CONCLUSION

Recent work opened a new angle of attack on the problem of e#ciency and scalability for parallel
functional programs by utilizing a memory property called disentanglement. There exists, however,
no known automated techniques for checking disentanglement, which leaves the burden of this
task entirely to the programmer. In this paper, we present techniques for detecting entanglement
(i.e., violations of disentanglement) dynamically, with low overhead, both in theory and practice.
We formalize the approach by presenting a semantics, proving its soundness and completeness, and
by presenting techniques for realizing it e#ciently. We validate the practicality of the approach
by extending the MPL compiler for Parallel ML and con!rming empirically that the techniques
perform and scale well. In contrast to the related problem of race detection for !ne-grained parallel
programs, we show that entanglement detection can be performed with nearly zero overhead (both
space and time).

Our experience with developing a parallel benchmark suite shows that many parallel programs
are naturally disentangled. Perhaps surprisingly, we have found that this holds even for programs
that were originally written in low level languages such as C/C++. But, as we consider a broader
set of parallel programs and include concurrent programs, which use communication between
concurrently executing tasks (or threads), entanglement will arise naturally. In future work, we plan
to use entanglement detection to bring the bene!ts of disentanglement-based memory management
to entangled programs by detecting entanglement at run-time and managing it automatically. The
result should be a fully general parallel functional programming language that supports e"ects and
thus communication.

ACKNOWLEDGEMENTS

We thank the anonymous reviewers for their thorough and insightful comments and suggestions.
This work was supported by the National Science Foundation under grants CCF-1901381, CCF-
2107241, CCF-2119352, and CCF-2115104.

Proc. ACM Program. Lang., Vol. 6, No. ICFP, Article 115. Publication date: August 2022.

.1 2

34

5

13

Thanks! 👋

