
Entanglement Detection With 
Near-Zero Cost

Sam Westrick  
Carnegie Mellon University


ICFP 2022

Ljubljana, Slovenia

1

Jatin Arora Umut Acar

joint work with:



?can parallel functional 
programming be 

efficient and scalable

challenges

- high rate of allocation

- heavy reliance on GC

with parallel memory management  
based on disentanglementYES

2



3

Disentanglement from 10000’
- informal defn: “concurrent tasks remain oblivious to each other’s allocations” 
- broadly applicable: occurs naturally in deterministic (e.g. functional!) programs

- enables efficient and scalable automatic memory management


- no cross-pointers



MaPLe Compiler

• based on MLton, full Standard ML language, extended with


• used by 500+ students at CMU each year


• parallel memory management based on disentanglement


• in practice: fast, scalable, and low space usage


• competitive performance vs low-level parallel C/C++ code

github.com/mpllang/mpl

val par: (unit -> ‘a) * (unit -> ‘b) -> ‘a * ‘b

4

MPL vs Java: 
  ~3x faster, ~4x less space

MPL vs Go: 
  ~2x faster, ~30% less space

MPL vs multicore OCaml: 
  ~2x faster, ~2x less space 

(averages on 72 processors)



5

The Problem

a

b
c

- not all programs are disentangled

- if GC assumes disentanglement, entangled programs might crash (or worse)



6

disentanglement 
needs to be enforced

The Problem

a
a’

b
c

dangling!

- not all programs are disentangled

- if GC assumes disentanglement, entangled programs might crash (or worse)



Enforce Disentanglement Statically?

7

- disallow in-place updates? inefficient

- type+effect system? 

- enforce determinism? too conservative 
- enforce disentanglement directly? tricky!

Challenge Cases: 
algorithms with “a little bit” of 
non-determinism



Our Approach: Entanglement Detection

8

- enforce disentanglement dynamically

- monitor memory reads and writes 

- if entanglement detected, terminate with error message

- like race detection, except almost zero overhead in practice  

(average: ~1% for both time and space. max ~10%)

sound (“no missed alarms”) safe for disentanglement

complete (“no false alarms”) permits all disentangled programs



Details

Algorithm

• build computation graph during execution

• annotate allocated locations with current vertex

• check results of memory reads


• disentangled: result allocated before current vertex

• otherwise, entanglement detected

9

Implementation Notes: 
• SP-order maintenance 
• read-barrier on mutable pointers only 

(with a very effective fast-path)

• closely integrated with memory management

allocate

location X

use X use X

disentanglement = allocation precedes use



10

Summary
disentanglement 
- common and natural property

- important for efficient automatic memory management

- can be checked dynamically  

with nearly zero overhead (this paper) 

MaPLe implementation

- fast, scalable, and space-efficient!

- competitive with low-level imperative code


Future / Ongoing work

- dynamic “entanglement management”

github.com/mpllang/mpl

Come see my  
ML Workshop keynote! 

(Thursday, 9:00am)


