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Because of its many desirable properties, such as its ability to control effects and thus potentially disastrous race

conditions, functional programming offers a viable approach to programming modern multicore computers.

Over the past decade several parallel functional languages, typically based on dialects of ML and Haskell, have

been developed. These languages, however, have traditionally underperformed procedural languages (such

as C and Java). The primary reason for this is their hunger for memory, which only grows with parallelism,

causing traditional memory management techniques to buckle under increased demand for memory. Recent

work opened a new angle of attack on this problem by identifying a memory property of determinacy-race-free

parallel programs, called disentanglement, which limits the knowledge of concurrent computations about

each other’s memory allocations. The work has showed some promise in delivering good time scalability.

In this paper, we present provably space-efficient automaticmemorymanagement techniques for determinacy-

race-free functional parallel programs, allowing both pure and imperative programs where memory may

be destructively updated. We prove that for a program with sequential live memory of R∗, any P-processor

garbage-collected parallel run requires at mostO(R∗ ·P)memory. We also prove a work bound ofO(W +R∗ ·P)

for P-processor executions, accounting also for the cost of garbage collection. To achieve these results, we

integrate thread scheduling with memory management. The idea is to coordinate memory allocation and

garbage collection with thread scheduling decisions so that each processor can allocate memory without

synchronization and independently collect a portion of memory by consulting a collection policy, which we

formulate. The collection policy is fully distributed and does not require communicating with other processors.

We show that the approach is practical by implementing it as an extension to the MPL compiler for Parallel

ML. Our experimental results confirm our theoretical bounds and show that the techniques perform and scale

well.
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1 INTRODUCTION

Nearly every computing device today, ranging from smartphones with 10 cores, and workstations
with dozens of cores [Sodani 2015], to servers with hundreds [Corp. 2017], and even thousands
of cores [Robinson 2017], is a parallel computer. There has been significant research on devel-
oping programming languages for programming such hardware, which has led to development
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of structured or nested parallelism. Nested parallelism relieves the programmer from the burden
of managing parallelism manually, allowing them instead to use high-level constructs such as
parallel tuples, parallel-for, fork-join, and async-finish, and relies on a thread scheduler to create
and schedule parallel tasks automatically and efficiently. Many effective scheduling algorithms
have been designed and implemented (e.g., [Acar et al. 2002, 2018; Arora et al. 2001; Blelloch et al.
1997; Blumofe and Leiserson 1999]).

Many procedural parallel programming languages and libraries based on these principles have
been devised including Intel Thread Building Blocks (a C++ library) [Intel 2011], Cilk (an extension
of C) [Blumofe et al. 1996; Frigo et al. 1998], OpenMP [OpenMP 5.0 2018], Task Parallel Library (a
.NET library) [Leijen et al. 2009], Rust [Rust Team 2019], Java Fork/Join Framework [Lea 2000],
Habanero Java [Imam and Sarkar 2014], and X10 [Charles et al. 2005]. These languages have the
advantage of performance on their side but make writing parallel programs challenging because of
their lax control over effects or mutation. With little or no control over effects, it is easy for the
programmers to create race conditions that can have disastrous consequences [Adve 2010; Allen
and Padua 1987; Bocchino et al. 2011, 2009; Boehm 2011; Emrath et al. 1991; Mellor-Crummey 1991;
Netzer and Miller 1992; Steele Jr. 1990].
Researchers have therefore developed parallel functional programming languages that make

things much simpler and safer, e.g., multiLisp [Halstead 1984], Id [Arvind et al. 1989], NESL [Blelloch
1996; Blelloch et al. 1994], several forms of parallel Haskell [Hammond 2011; Li et al. 2007; Marlow
and Jones 2011; Peyton Jones et al. 2008], and several forms of parallel ML [Fluet et al. 2011; Guatto
et al. 2018; Ohori et al. 2018; Raghunathan et al. 2016; Sivaramakrishnan et al. 2014; Spoonhower
2009;Westrick et al. 2020; Ziarek et al. 2011]. Some of these languages only support pure or mutation-
free functional programs but others such as Parallel ML [Guatto et al. 2018; Westrick et al. 2020]
allow using side effects. Because functional languages also support higher order functions (e.g.,
map, filter, reduce over collections of data), they enable expressing parallel algorithms elegantly
and succinctly.

Functional programs, however, fall short when it comes to efficiency and scalability. The primary
reason for this is memory: functional languages are memory hungry and allocate at a very high
rate [Appel 1989; Appel and Shao 1996; Auhagen et al. 2011; Doligez and Gonthier 1994; Doligez and
Leroy 1993; Gonçalves 1995; Gonçalves and Appel 1995; Marlow and Jones 2011]. This allocation
rate increases even more with parallelism, because multiple cores can allocate at the same time.
To overcome this fundamental challenge, researchers have proposed assigning each processor
its own łprocessor-local heapž where it can allocate independently without synchronizing with
other processors. In nested-parallel programs, this technique can require copying objects, a.k.a.,
łpromotionž, from a processor-local heap to the shared heap when the scheduler migrates a thread
from one processor to another. For decades, this tug of war between synchronization-free allocation,
which is essential for performance of parallel programs, and thread-scheduling, which is essential
for scalability seemed unwinnable. Several variants of the processor-local-heap architecture dating
back to 1990’s [Auhagen et al. 2011; Doligez and Gonthier 1994; Doligez and Leroy 1993; Marlow and
Jones 2011; Sivaramakrishnan et al. 2020] have been proposed but none guarantee provable space
and work bounds. In contrast, nearly all automatic memory management techniques proposed for
the now outdated sequential machines or programming models are provably space and work (time)
efficient [Jones et al. 2011].
Recent work on disentanglement has made some progress on this problem. The observation

behind disentanglement is that in many parallel programs, a thread does not (need to) know about
the allocations of other concurrently executing threads. Disentanglement holds for a fork-join
program if it is 1) purely functional [Raghunathan et al. 2016], 2) uses side effects but is determinacy-
race-free [Westrick et al. 2020], or 3) uses side effects and has data races but it does not make
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allocations of one thread visible to other concurrently executing threads. Using disentanglement,
prior work [Raghunathan et al. 2016;Westrick et al. 2020] proposed techniques that allow processors
to allocate memory without synchronizing with other processors, and to avoid copying (promoting)
data due to thread scheduler actions. Prior work also proposed a memory reclamation technique
but (as pointed out by the authors) it is quite conservative and can allow garbage to accumulate.

In this paper, we consider nested-parallel (fork-join) languages and present results for executing
them on multiprocessor machines in a provably space efficient manner. The key idea behind

our techniques is to partition memory into a hierarchy of heaps and schedule heaps by
actively mapping them to processors, much like a thread scheduler that assigns threads

(or tasks) to processors. The heap-scheduler makes assignments by observing thread scheduling
decisions, which may migrate threads/tasks between processors. Each processor in turn allocates
memory only in the heaps that are assigned to it and is responsible for collecting them. Our
techniques apply to all disentangled programs, including purely functional, and imperative programs
that use destructive updates. Because disentanglement is currently defined for fork-join programs
only, in this paper, we consider the fork-join programming model. Extending our techniques to
more general models of parallelism, e.g., futures, requires generalizing the disentanglement theory
accordingly (Section 11).
We present a collection policy that determines when a processor can garbage collect to meet

desired space and work efficiency bounds. The collection policy is fully distributed: each processor
makes its decisions independently of all other processors, without any synchronization. To collect
its heaps, a processor can use one or a combination of suitable garbage collection algorithms from
the literature [Jones et al. 2011].
We bound the space for P-processor runs in terms of live (reachable) space of sequential runs.

One challenge in bounding space of parallel runs is the non-determinism inherent in parallel
executions, where parallel computations that are ordered by a sequential run may complete in
a different order, resulting in different space complexity. To account for this non-determinism,
we show that it suffices to consider a łlittle bit ofž non-determinism by defining a metric, which
we call unordered reachable space. This quantity bounds the reachable space over all sequential
computations, where the two sides of a parallel pair are executed in either order (i.e., left before
right, and right before left).

We describe our techniques by first presenting a cost semantics (Section 3) that constructs a task
tree for the computation, and computes the maximum reachable space during the computation.
We then present a scheduling algorithm that as it executes tasks, also organizes the memory into
a hierarchy of heaps, maps the heaps to the processors, and performs garbage collection. This
scheduling algorithm thus extends a traditional thread/task scheduler with the ability to łschedulež
memory, in terms of heaps, and garbage collections. For scheduling threads, our scheduling algo-
rithm follows the same techniques as a classic thread scheduling algorithm such as work stealing,
and permits flexibility in terms of steal strategies (e.g., randomized, steal-half, round-robin, etc).
Our bounds do not depend on specific stealing strategies and apply more generally.

We establish space and work bounds on P-processor computations (Sections 6 and 7). For space,
we prove that for a determinacy-race-free nested-parallel program with unordered sequential
reachable space of R∗, any P-processor run with our integrated scheduler requires O(R∗ · P) space.
We also prove that the total work for a P-processor execution isO(W +R∗ ·P), whereW is the work
of the computation, i.e., the time for a sequential run. This bound includes the cost for garbage
collection. The additive term R∗ · P is a consequence of parallel execution, where each processor
could in the worst case allocate as much as R∗ space and collect it, and is therefore difficult to avoid.
Because our technique involves parallel programs and modern multicore architectures, its

implementation requires complex engineering, e.g., due to many low-level concurrency issues
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involved, and due to the interaction with the thread scheduler. A legitimate concern is whether
the approach can be practical. We extend MPL, a compiler and runtime system for the Parallel ML
language, that builds on the industry-strength high-performance compiler [MLton [n.d.]]. We also
present a modest empirical study, focusing on the main points of our contributions, including space
and time behavior under varying number of processors. We consider a variety of state-of-the-art
highly optimized parallel benchmarks that have been developed in the context of procedural parallel
programming languages (C/C++ and extensions) and were recently ported to Parallel ML in prior
work [Westrick et al. 2020]. The experiments empirically confirm our theoretical results, incurring
small overheads compared optimized sequential baselines, scaling well with available cores, and
achieving tight space bounds. Notably, for most benchmarks, 70-processor executions consume up
to 5-fold space compared to sequential ones, while achieving up to 50 fold speedups.
The contributions of this paper include the following.

• A scheduling algorithm that integrates memory management and thread scheduling.
• Space and work bounds for memory-managed nested parallel programs.
• An implementation that extends theMPL compiler for Parallel ML.
• An empirical evaluation showing evidence that functional languages can compete and even
out-compute procedural languages in performance.

Our results give strong evidence for the hypothesis that many safety benefits of functional languages
for parallelism may be realized with little or no performance penalty.

2 PRELIMINARIES

2.1 Fork-join

Fork-join is a disciplined synchronization strategy for parallel programs based on tasks organized
into a dynamic task tree, where each task is either active, passive, or suspended. Initially, a
fork-join program consists of a single active root task. At any moment, an active task can fork
into two or more child tasks; this is performed by (1) spawning two new tasks for the children, (2)
suspending the execution of the task that forked, and then (3) executing the (now active) children
in parallel. The parent remains suspended while the children execute. When a task completes, it
becomes passive and waits for its sibling(s) to complete. As soon as all siblings below a node have
completed, they join with the parent task, which deletes the child tasks and lets the parent resume
as an active task.
We say that two tasks are concurrent when neither task is an ancestor of the other. That is,

concurrent tasks could be siblings, cousins, etc. By suspending the execution of the parent at each
fork, we guarantee that no task is ever running concurrently with one of its descendants.

2.2 Heap Hierarchy

We give each task a heap which stores all objects allocated by that task. This essentially assigns
łownershipž of each object to the task which performed the allocation. New tasks are initialized
with fresh empty heaps, and when a group of siblings join with their parent, we merge their heaps
into the parent heap, as illustrated in Figure 1. In this way, all data allocated by a task is returned
to its parent upon completion. Note that this is purely a łlogicalž merge that takes constant time
and does not require copying any data (see Section 8 for more details).

The heaps form a dynamic tree which mirrors the task tree. We call this (dynamic) tree the heap
hierarchy, and use similar terminology for heaps as for tasks: internal heaps are suspended, and
leaf heaps are either active or passive (determined by the status of their corresponding tasks).

Every pointer in memory can be classified as either up, down, internal, or cross, depending on the
relative positions of objects within the heap hierarchy. In particular, consider two objects x and y
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merge heaps 

into parent

fresh empty heaps

fork join

Fig. 1. Forks and joins. Active or passive tasks are black circles,

and suspended tasks are white circles. Each task has a heap,

drawn as a gray rectangle.

Fig. 2. A disentangled heap hierarchy. Up,

down, and internal pointers (solid) are per-

mitted. Cross-pointers (dotted) are disal-

lowed.

and their corresponding heaps H (x) and H (y), and suppose x points to y (i.e. x has a field which is
a pointer to y). We classify this pointer as follows:

(1) if H (x) is a descendant of H (y) then the pointer is an up-pointer;
(2) if H (x) is an ancestor of H (y) then it is a down-pointer;
(3) if H (x) = H (y) then it is an internal pointer;
(4) otherwise, it is a cross-pointer.

2.3 Disentanglement

Fork-join programs often exhibit a memory property known as disentanglement, which intu-
itively is the property that concurrent tasks remain oblivious to each other’s allocations.
Specifically, in a disentangled program, no task will ever obtain a reference to an object allocated
by some other concurrent task. This ensures that the heap hierarchy has no cross-pointers;
that is, disentangled programs only use up-, down-, and internal pointers, as illustrated in Figure 2.
Note that down-pointers can only be created via mutation.

We assume throughout this paper that all programs are disentangled, which can be guaranteed
in multiple ways. The simplest approach is to disallow mutation entirely: Raghunathan et al.
[2016] proved that disentanglement is guaranteed by construction for strict (call-by-value) purely
functional languages. More generally, Westrick et al. [2020] proved that all determinacy-race-free
programs are disentangled, meaning that we could instead just verify that our programs are race-
free (e.g. with an off-the-shelf race-detector). Essentially, they observed that a cross-pointer could
only be created by reading a down-pointer into some concurrent heap, which is racy because the
read conflicts with the write that created the down-pointer. Note however that disentanglement

permits data races, and even allows for arbitrary communication between tasks as long as this
communication is facilitated by pre-allocated memory (i.e. memory allocated by common ancestors).

2.4 Cost Bounds and Determinism

Taking into account all costs of memory management (including e.g. GC), we are interested in
bounding thework (total number of instructions executed) and space (maximummemory footprint
throughout execution) required for parallel execution. We would ideally like to state these bounds
in terms of the work and space required for sequential execution, because this eliminates the need
to reason about non-determinism of scheduling. However, if a program itself is non-deterministic,
then it is possible for two different parallel executions to have arbitrarily different amounts of work
and space (e.g. due to decisions based on the outcome of a race). Therefore, for cost analysis,
we assume programs are deterministic in the sense of being determinacy-race-free (defined
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Variables x, f

Numbers m ∈ N

Memory Locations ℓ

Types τ ::= nat | τ × τ | τ→τ | τ ref

Storables s ::= m | fun f x is e | ⟨ℓ, ℓ⟩ | ref ℓ

Expressions e ::= ℓ | s | x | e e | ⟨e, e⟩ | fst e | snd e | ref e | ! e | e := e | ⟨e ∥ e⟩

Memory µ ∈ Locations ⇀ Storables

Computation Graph д ::= • | n | α |s | | д ⊕ д | д ⊗ д

Task Tree T ::= [д] | д ⊕ (T ⊗ T)

Fig. 3. Syntax

below), which guarantees that parallel and sequential executions are similar enough in order to
prove our bounds. Under this assumption, disentanglement is guaranteed [Westrick et al. 2020],
so our techniques are applicable. Note that even though we only provide performance bounds for
race-free programs, our memory management techniques are nevertheless correct for all

disentangled programs, including those that are non-deterministic (e.g. due to a race).
A determinacy race occurs when two concurrent tasks access the same memory location, and

at least one of these accesses modifies the location [Feng and Leiserson 1997]. This is essentially
the same notion as a łdata racež; however there is a subtlety which leads us to prefer the term
łdeterminacy racež. Programs which are determinacy-race-free are deterministic in a strong

sense: not only is the final result the same in every possible execution, but also the specifics of how
that result is computed are precisely the same every time.1 That is, each determinacy-race-free
program has a unique computation graph: a directed, acyclic graph where vertices are executed
instructions and edges are sequential dependencies.

3 LANGUAGE

For a formal analysis of our techniques, we consider a simple call-by-value functional language
extended with fork-join (nested) parallelism. Richer constructs like arithmetic operators and arrays
could be added, but we omit them for brevity. The language allows for unrestricted side-effects
and does not statically enforce either disentanglement (required for our memory management
techniques) or race-freedom (required for our cost bounds). The choice of a functional language
here is not essential, and our analysis can be extended to an imperative setting.

In addition to defining how an expression evaluates to a value, our operational semantics defines
some intensional aspects: the task tree and the space usage. Task trees are suitable for defining both:
the garbage collection strategy and the scheduling algorithm The space usage gives the maximum
memory footprint of a program’s parallel run. Together with the task trees, the space usage serves
as a basis for the asymptotic analysis of work and space of garbage-collected evaluation.

3.1 Syntax

Figure 3 gives the syntax for the language studied in this work.

Types. The types include a base type of natural numbers, function types and product types for
expressing parallel pairs. The type system also supports mutable references.

Memory Locations and Storables. We distinguish between storables s , which are always allocated
in the heap, and memory locations ℓ. Storables include natural numbers, named recursive functions,

1This is also known as internal determinism [Blelloch et al. 2012] at the level of individual memory reads and writes.
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pairs of memory locations, and mutable references to other memory locations. Storables are not
irreducible but only step to locations. Locations are the only irreducible form of the language.

Expressions. Expressions in our language include variables, locations, storables, and introduction
and elimination forms for the standard types. Parallelism is expressed using parallel pairs (⟨e ∥ e⟩).
For an expression e , we use locs(e) to denote the set of locations referenced by it.

Memory. In order to give an operational semantics for memory effects, we include a map µ from
locations to storables. We refer to µ as the memory, dom(µ) for the set of locations mapped by µ,
µ(ℓ) to look up the storable mapped to ℓ and µ[ℓ ֒→s] to extend µ with a new mapping.

3.2 Cost Semantics

The cost semantics of the language is based on a standard transition (small-step) semantics of a
functional language with mutation. The semantics relation is written as:

ρ ⊢ µ ; T ; R ; e → µ ′ ; T ′ ; R′ ; e ′.

The semantics records the work done during the evaluation in a task tree T . The context in the
relation, ρ, is the set of locations referred by the evaluation context of e . It is used to compute the
memory footprint of the evaluation. The maximum memory footprint (space usage) so far is stored
in R. The inference rules for the semantics are given in Figure 4.

Task Trees. At any step, the program’s evaluation can be organized into a tree whose vertices
represent tasks, and edges represent the control dependencies between them. Each task of the tree
is represented as a computation graph (д) consisting of computation nodes. These nodes record
all the steps taken by that task.

At the start of evaluation, the tree only has the root task. Since no work has been done yet, the
root task is represented as the empty graph [•]. The square brackets indicate that the task is a leaf.
The rule Fork precedes the evaluation of parallel pairs and adds two new leaves ([•], [•]) using the
parallel composition (⊗). The rule also removes the square brackets from the parent task to mark
that it is suspended. The execution of these subtasks can be interleaved non-deterministically by
rules ParL and ParR. Once both the subtasks finish, the rule Join executes. This rule deletes the
vertices corresponding to the subtasks but adds their computation graphs to the parent using the
sequential composition (⊕). The parent task becomes a leaf again and resumes execution.

Other aspects of the language (sequential pairs, functions, and mutation) are sequential and do
not alter the structure of the tree. Instead, their evaluation extends the leaf tasks with computation
nodes. For simplicity, we assume that each step of their evaluation (with rules App, Bang, Upd)
requires a unit of computation and their rules add a computation node (n) to the graph. The
computation node added by rule Alloc is represented by α |s | , where |s | is the amount of memory
allocated. We assume that an allocation of |s | units of memory requires |s | units of computation.

Space Usage. Space usage is the maximum memory footprint of an evaluation. The locations in
the memory store, µ, can be viewed as nodes of a directed graph, in which edges are the pointers
between locations. For two locations ℓ, ℓ′ we say that ℓ points to ℓ′ or ℓ →µ ℓ

′ if the storable at ℓ has
a pointer to the storable at ℓ′. Locations that are explicitly referenced by the program expression
are called ‘roots’. The context ρ tracks the roots for the evaluation context of the sub-expression
that steps, i.e., for any step with context ρ and sub-expression e , (ρ ∪ locs(e)) contains all the roots
of the program. To achieve this, the rules extend the context appropriately in the premise before
evaluating a sub-expression. For example, in rule ASL (application step left) the roots of e2 are
added to ρ before evaluating e1. The locations reachable from the roots are potentially being used in
the evaluation and count towards its memory footprint. At step t , we denote the set of roots (root
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R′ = max( |E+µ (ρ ∪ locs(s))| + |s |,R ) ℓ < dom(µ) µ ′ = µ[ℓ ֒→s]

ρ ⊢ µ ; [д] ; R ; s → µ ′ ; [д ⊕ α |s |] ; R
′ ; ℓ

Alloc

ρ ∪ {locs(e2)} ⊢ µ ; T ; R ; e1 → µ ′ ; T ′ ; R′ ; e1
′

ρ ⊢ µ ; T ; R ; (e1 e2) → µ ′ ; T ′ ; R′ ; (e ′1 e2)
ASL

ρ ∪ {ℓ1} ⊢ µ ; T ; R ; e2 → µ ′ ; T ′ ; R′ ; e2
′

ρ ⊢ µ ; T ; R ; (ℓ1 e2) → µ ′ ; T ′ ; R′ ; (ℓ1 e
′
2)

ASR

µ(ℓ1) = fun f x is eb

ρ ⊢ µ ; [д] ; R ; (ℓ1 ℓ2) → µ ; [д ⊕ n] ; R ; [ℓ1, ℓ2 / f , x]eb
App

ρ ⊢ µ ; T ; R ; e → µ ′ ; T ′ ; R′ ; e ′

ρ ⊢ µ ; T ; R ; (fst e) → µ ′ ; T ′ ; R′ ; (fst e ′)
FstS

µ(ℓ) = ⟨ℓ1, ℓ2⟩

ρ ⊢ µ ; [д] ; R ; (fst ℓ) → µ ; [д ⊕ n] ; R ; ℓ1
Fst

ρ ⊢ µ ; T ; R ; e → µ ′ ; T ′ ; R′ ; e ′

ρ ⊢ µ ; T ; R ; (ref e) → µ ′ ; T ′ ; R′ ; (ref e ′)
RefS

ρ ⊢ µ ; T ; R ; e → µ ′ ; T ′ ; R′ ; e ′

ρ ⊢ µ ; T ; R ; (! e) → µ ′ ; T ′ ; R′ ; (! e ′)
BangS

µ(ℓ1) = ref ℓ2

ρ ⊢ µ ; [д] ; R ; (! ℓ1) → µ ; [д ⊕ n] ; R ; ℓ2
Bang

ρ ∪ {locs(e2)} ⊢ µ ; T ; R ; e1 → µ ′ ; T ′ ; R′ ; e1
′

ρ ⊢ µ ; T ; R ; (e1 := e2) → µ ′ ; T ′ ; R′ ; (e ′1 := e2)
USL

ρ ∪ {ℓ1} ⊢ µ ; T ; R ; e2 → µ ′ ; T ′ ; R′ ; e2
′

ρ ⊢ µ ; T ; R ; (ℓ1 := e2) → µ ′ ; T ′ ; R′ ; (ℓ1 := e
′
2)

USR

ρ ⊢ µ0[ℓ1 ֒→s] ; [д] ; R ; (ℓ1 := ℓ2) → µ0[ℓ1 ֒→ref ℓ2] ; [д ⊕ n] ; R ; ℓ2
Upd

ρ ⊢ µ ; [д] ; R ; ⟨e1 ∥ e2⟩ → µ ; д ⊕ ([•] ⊗ [•]) ; R ; ⟨e1 ∥ e2⟩
Fork

ρ ⊢ µ ; д ⊕ ([д1] ⊗ [д2]) ; R ; ⟨ℓ1 ∥ ℓ2⟩ → µ ; [д ⊕ (д1 ⊗ д2)] ; R ; ⟨ℓ1, ℓ2⟩
Join

ρ ∪ {locs(e2)} ⊢ µ ; T1 ; R ; e1 → µ ′ ; T ′1 ; R′ ; e ′1

ρ ⊢ µ ; д ⊕ (T1 ⊗ T2) ; R ; ⟨e1 ∥ e2⟩ → µ ′ ; д ⊕ (T ′1 ⊗ T2) ; R
′ ; ⟨e ′1 ∥ e2⟩

ParL

ρ ∪ {locs(e1)} ⊢ µ ; T2 ; R ; e2 → µ ′ ; T ′2 ; R′ ; e ′2

ρ ⊢ µ ; д ⊕ (T1 ⊗ T2) ; R ; ⟨e1 ∥ e2⟩ → µ ′ ; д ⊕ (T1 ⊗ T
′
2 ) ; R

′ ; ⟨e1 ∥ e
′
2⟩

ParR

Fig. 4. Language Dynamics.

set) as ρt . The set of reachable locations is denoted as E+µ (ρ
t ) and the cumulative size of storables

mapped by this set is represented as |E+µ (ρ
t )|. Space usage is formally defined to be maxt |E

+

µ (ρ
t )|.

The semantics maintains the space usage of the evaluation in R. Since the reachable memory can
increase only after an allocation, R is updated only after the program allocates (rule Alloc). This
rule computes the reachable memory from the root set (ρ ∪ locs(s)), adds the size of the newly
allocated storable and updates R if the space usage has increased.
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The other rules are standard and we skip their description for sake of brevity. The evaluation of a
program e starts with the state (∅ ; [•] ; 0 ;e). Suppose it terminates with the state (µ ; [д] ;R ; ℓ). Then
the total work done for evaluating e is the number of nodes in the graph д, where each allocation
node (α |s |) is counted |s | times. Additionally, the max space usage during the evaluation is R, which
is the minimum amount of memory required to execute the program.

4 INTEGRATING THREAD SCHEDULING AND GARBAGE COLLECTION

We present a technique that integrates thread scheduling and garbage collection to achieve provably
space and work efficient garbage collection.
We consider executing a nested-parallel (fork-join) program on P workers, with identities

0 ≤ p < P . Each worker executes tasks and may perform garbage collection. As is typical with
nested-parallel programs, a scheduling algorithm assigns tasks to workers dynamically in an online
fashion; each worker then executes the task that they are assigned.

The crux of our approach lies in the interaction between memory and the thread scheduler. Our
approach specifically relies on a heap scheduler that

(1) partitions memory into heaps each of which corresponds in a one-to-one fashion with tasks,
and organizes the heaps into a heap hierarchy (tree) that mirrors the task tree, and

(2) dynamically assigns each heap to one and only one worker at any time, partitioning thus the
memory between the workers.

Each worker in turn only allocates memory in its heaps and is responsible for collecting the
unreachable objects in its heaps by using a garbage collection algorithm. The times for garbage
collection, are decided by a fully-distributed collection policy, in which each worker can decide to
garbage-collect on its own.

Heap Scheduler. Much like a thread scheduler that distributes threads between workers, we
present a heap scheduler that assigns heaps to workers. More specifically, the heap scheduler
assigns a heap set Mp to each worker p such that

• each and every heap is assigned to a worker,
• for different workers p and q,Mp ∩Mq = ∅.

Thus, the heap scheduler partitions all heaps between the workers. Because heaps of different
workers are disjoint, each worker can collect its heaps independently from others.

Our heap scheduler assigns every active heap to the worker that is executing the corresponding
task. The most important difference between our heap scheduler and standard thread schedulers is
that our scheduler must also assign suspended and passive heaps, i.e., heaps whose tasks are not
active. Such heaps take up space, and we must carefully assign them to workers to ensure that they
are subject to garbage collection. Our scheduler guarantees the following invariants:

(1) if a worker p is executing a task, then the heap of the task is assigned to p
(2) if a suspended (internal) heap is inMp , then at least one of its children is also inMp , and
(3) every passive heap belongs to the same worker as its sibling.

Roughly speaking, these invariants enforce that each heap set is a path-like structure, consisting of
the path from an ancestor heap to an active leaf and some passive leaves.

Example. Consider the two heap trees in Figure 5. Since there is a one to one correspondence
between tasks and heaps, we will interpret the boxes in figure as either tasks or heaps. The gray
boxes represent active or suspended tasks and the black box represents a task that is passive. The
active tasks are being executed by four workers indexed 0, 1, 2, and 3. The gray ellipses represent
the sets of heaps assigned to the workers inside them. The figure shows example partitions of the
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1<latexit sha1_base64="/6fwG+91peF2OwS1fgLJH66t96c=">AAAB6XicbVBNS8NAEJ3Ur1q/qh69LBbBU0mqoMeiF49V7Ae0oWy2k3bpZhN2N0Ip/QdePCji1X/kzX/jps1BWx8MPN6bYWZekAiujet+O4W19Y3NreJ2aWd3b/+gfHjU0nGqGDZZLGLVCahGwSU2DTcCO4lCGgUC28H4NvPbT6g0j+WjmSToR3QoecgZNVZ68Er9csWtunOQVeLlpAI5Gv3yV28QszRCaZigWnc9NzH+lCrDmcBZqZdqTCgb0yF2LZU0Qu1P55fOyJlVBiSMlS1pyFz9PTGlkdaTKLCdETUjvexl4n9eNzXhtT/lMkkNSrZYFKaCmJhkb5MBV8iMmFhCmeL2VsJGVFFmbDhZCN7yy6ukVat6F9Xa/WWlfpPHUYQTOIVz8OAK6nAHDWgCgxCe4RXenLHz4rw7H4vWgpPPHMMfOJ8/sCiMzQ==</latexit>0
<latexit sha1_base64="yvdzdUBQiZRbuXUMfwlJb0Afo7Y=">AAAB6XicbVBNS8NAEJ3Ur1q/qh69LBbBU0mqoMeiF49V7Ae0oWy2k3bpZhN2N0Ip/QdePCji1X/kzX/jps1BWx8MPN6bYWZekAiujet+O4W19Y3NreJ2aWd3b/+gfHjU0nGqGDZZLGLVCahGwSU2DTcCO4lCGgUC28H4NvPbT6g0j+WjmSToR3QoecgZNVZ6cEv9csWtunOQVeLlpAI5Gv3yV28QszRCaZigWnc9NzH+lCrDmcBZqZdqTCgb0yF2LZU0Qu1P55fOyJlVBiSMlS1pyFz9PTGlkdaTKLCdETUjvexl4n9eNzXhtT/lMkkNSrZYFKaCmJhkb5MBV8iMmFhCmeL2VsJGVFFmbDhZCN7yy6ukVat6F9Xa/WWlfpPHUYQTOIVz8OAK6nAHDWgCgxCe4RXenLHz4rw7H4vWgpPPHMMfOJ8/rqOMzA==</latexit> 3

<latexit sha1_base64="LNUgVcgcWmrkAqMqFwJgrNe8JZM=">AAAB6HicbVDLTgJBEOzFF+IL9ehlIjHxRHbBRI9ELx4hkUcCGzI79MLI7OxmZtaEEL7AiweN8eonefNvHGAPClbSSaWqO91dQSK4Nq777eQ2Nre2d/K7hb39g8Oj4vFJS8epYthksYhVJ6AaBZfYNNwI7CQKaRQIbAfju7nffkKleSwfzCRBP6JDyUPOqLFSo9ovltyyuwBZJ15GSpCh3i9+9QYxSyOUhgmqdddzE+NPqTKcCZwVeqnGhLIxHWLXUkkj1P50ceiMXFhlQMJY2ZKGLNTfE1MaaT2JAtsZUTPSq95c/M/rpia88adcJqlByZaLwlQQE5P512TAFTIjJpZQpri9lbARVZQZm03BhuCtvrxOWpWyVy1XGlel2m0WRx7O4BwuwYNrqME91KEJDBCe4RXenEfnxXl3PpatOSebOYU/cD5/AH7zjLs=</latexit>1<latexit sha1_base64="/6fwG+91peF2OwS1fgLJH66t96c=">AAAB6XicbVBNS8NAEJ3Ur1q/qh69LBbBU0mqoMeiF49V7Ae0oWy2k3bpZhN2N0Ip/QdePCji1X/kzX/jps1BWx8MPN6bYWZekAiujet+O4W19Y3NreJ2aWd3b/+gfHjU0nGqGDZZLGLVCahGwSU2DTcCO4lCGgUC28H4NvPbT6g0j+WjmSToR3QoecgZNVZ68Er9csWtunOQVeLlpAI5Gv3yV28QszRCaZigWnc9NzH+lCrDmcBZqZdqTCgb0yF2LZU0Qu1P55fOyJlVBiSMlS1pyFz9PTGlkdaTKLCdETUjvexl4n9eNzXhtT/lMkkNSrZYFKaCmJhkb5MBV8iMmFhCmeL2VsJGVFFmbDhZCN7yy6ukVat6F9Xa/WWlfpPHUYQTOIVz8OAK6nAHDWgCgxCe4RXenLHz4rw7H4vWgpPPHMMfOJ8/sCiMzQ==</latexit>0
<latexit sha1_base64="yvdzdUBQiZRbuXUMfwlJb0Afo7Y=">AAAB6XicbVBNS8NAEJ3Ur1q/qh69LBbBU0mqoMeiF49V7Ae0oWy2k3bpZhN2N0Ip/QdePCji1X/kzX/jps1BWx8MPN6bYWZekAiujet+O4W19Y3NreJ2aWd3b/+gfHjU0nGqGDZZLGLVCahGwSU2DTcCO4lCGgUC28H4NvPbT6g0j+WjmSToR3QoecgZNVZ6cEv9csWtunOQVeLlpAI5Gv3yV28QszRCaZigWnc9NzH+lCrDmcBZqZdqTCgb0yF2LZU0Qu1P55fOyJlVBiSMlS1pyFz9PTGlkdaTKLCdETUjvexl4n9eNzXhtT/lMkkNSrZYFKaCmJhkb5MBV8iMmFhCmeL2VsJGVFFmbDhZCN7yy6ukVat6F9Xa/WWlfpPHUYQTOIVz8OAK6nAHDWgCgxCe4RXenLHz4rw7H4vWgpPPHMMfOJ8/rqOMzA==</latexit>

3
<latexit sha1_base64="LNUgVcgcWmrkAqMqFwJgrNe8JZM=">AAAB6HicbVDLTgJBEOzFF+IL9ehlIjHxRHbBRI9ELx4hkUcCGzI79MLI7OxmZtaEEL7AiweN8eonefNvHGAPClbSSaWqO91dQSK4Nq777eQ2Nre2d/K7hb39g8Oj4vFJS8epYthksYhVJ6AaBZfYNNwI7CQKaRQIbAfju7nffkKleSwfzCRBP6JDyUPOqLFSo9ovltyyuwBZJ15GSpCh3i9+9QYxSyOUhgmqdddzE+NPqTKcCZwVeqnGhLIxHWLXUkkj1P50ceiMXFhlQMJY2ZKGLNTfE1MaaT2JAtsZUTPSq95c/M/rpia88adcJqlByZaLwlQQE5P512TAFTIjJpZQpri9lbARVZQZm03BhuCtvrxOWpWyVy1XGlel2m0WRx7O4BwuwYNrqME91KEJDBCe4RXenEfnxXl3PpatOSebOYU/cD5/AH7zjLs=</latexit>2<latexit sha1_base64="lrS1we6FxLOe2Q4o2XbDWfwWkAQ=">AAAB6XicbVBNS8NAEJ3Ur1q/qh69LBbBU0mqoMeiF49V7Ae0oWy2k3bpZhN2N0Ip/QdePCji1X/kzX/jps1BWx8MPN6bYWZekAiujet+O4W19Y3NreJ2aWd3b/+gfHjU0nGqGDZZLGLVCahGwSU2DTcCO4lCGgUC28H4NvPbT6g0j+WjmSToR3QoecgZNVZ6qJX65Ypbdecgq8TLSQVyNPrlr94gZmmE0jBBte56bmL8KVWGM4GzUi/VmFA2pkPsWipphNqfzi+dkTOrDEgYK1vSkLn6e2JKI60nUWA7I2pGetnLxP+8bmrCa3/KZZIalGyxKEwFMTHJ3iYDrpAZMbGEMsXtrYSNqKLM2HCyELzll1dJq1b1Lqq1+8tK/SaPowgncArn4MEV1OEOGtAEBiE8wyu8OWPnxXl3PhatBSefOYY/cD5/ALGtjM4=</latexit>

Fig. 5. Example heap sets of the workers before and after 2 finishes its task

heap trees that satisfy the invariants described above. The tree on the left corresponds to a step at
which four leaf heaps are active.

Suppose the leaf task at worker 2 terminates. The leaf becomes passive because its sibling is not
ready to join. In order to maintain the third invariant, the heap scheduler ‘migrates’ worker 2’s
heaps to the worker that has the sibling, i.e., worker 3. The tree on the right shows the heap sets
after the migration. Intuitively, the memory state at worker 3 is as if the passive leaf had executed
on it (and not on worker 2). This allows us to compare the space usage in this execution to space
usage in an execution where both siblings execute sequentially on worker 3. This comparison is
crucial for the proof of space bounds in Section 6, as it relates the space of each heap set to the
sequential space.

Collection Policy. Each worker manages the heaps that are assigned to it and determines when
to perform garbage collection on its own. To this end, a worker p maintains a counter λp , that
tracks the amount of memory that survived the last collection performed by p. This counter is a
rough estimate of the maximum space usage withinMp and guides the worker on when it should
collect. Specifically, the worker p ensures that |Mp | < κ · λp , where |Mp | is the heap set’s size and
κ > 1 is an adjustable constant in the collection policy. That is, the worker makes sure that the
size of the memory assigned to it remains within a constant factor of this counter and does not
grow arbitrarily. When the worker observes that |Mp | ≥ κ · λp , it executes a collection algorithm
on its heaps. The collection algorithm determines reachability inMp and reclaims the unreachable
locations. After the collection is completed, the worker re-initializes the counter λp to the new size
of its heap set and resumes executing its assigned task.
In order for garbage collection to be correct, we must ensure that a reachable object is never

reclaimed. Determining which objects are reachable is tricky, because the set of reachable objects
within a heap may depend on pointers from other workers (for example, an object may be only
reachable from a root that lives in a heap assigned to some other worker). To handle this, we equip
each heap set with a remembered set that keeps track of ładditional rootsž for garbage collection.
Essentially, each worker assumes that all objects in the remembered set are reachable and keeps
all objects reachable from these ładditional rootsž alive. To be correct, we must ensure that the
remembered set is conservative: the set of objects reachable from the remembered set must include
all live objects within the heap set, but it may also include some garbage. Our proofs of performance
bounds (Section 6) account for this extra garbage.

To maintain remembered sets efficiently, we take advantage of disentanglement, which ensures
that the heap hierarchy is free of cross-pointers. Because of this invariant, we only need to reason
about up-pointers and down-pointers from heap sets of other workers. The down-pointers are
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conceptually simple to handle: we can think of the remembered set as a concurrent data structure
that is updated whenever a new down-pointer into the heap set is created. To handle up-pointers,
we use a snapshotting strategy that conservatively estimates reachability within suspended heaps
by adding a small number of additional objects to remembered sets. Snapshotting is implemented
via two mechanisms: (1) in the work-stealing scheduler (Section 5), whenever a task is stolen, the
thief also inserts that task’s roots into the appropriate remembered set, and (2) a write barrier
ensures that the conservative reachability estimate is not affected by mutating internal pointers.

5 THREAD AND HEAP SCHEDULINGWITHWORK STEALING

To make the high-level description of the thread scheduler, heap scheduler, and the collection algo-
rithm more precise, we first present an abstract scheduling algorithm that the workers implement
and describe how the policy partitions the heaps of the heap tree. We then develop a collection
algorithm that can be used to collect these partitions.

5.1 Thread and Heap Scheduling

Scheduling algorithms like work-stealing assign each worker a double ended queue or deque, of
tasks that the worker may execute. The execution starts with the root task placed into the deque
of the worker 0. The other deques are empty since there are no other tasks available at the start.
All the heap sets are empty, and the counter of all the workers is zero. The execution by workers
proceeds in steps. For simplicity, we assume that executing a task requires the worker to execute
several instructions, each of which needs one step to complete.
The pseudo-code of the scheduling algorithm is in Figure 6. For presentability, the pseudo-

code does not deal with concurrency issues like a real implementation would. We defer those
details to Section 8. We also assume an implementation of some helper modules: (1) Module
Deque provides the type Deque.deque for deques and functions like Deque.empty, Deque.popBottom,
Deque.pushBottom that are used to modify and query the deque, (2) Module Task provides functions
like parent, sibling and Instructions that implement the task tree abstraction, and (3) Module
Heap provides similar functions for heap trees, gives a function Merge for merging leaf heaps with
their parent, and a function NewHeap for creating new heaps.

The code also assumes the abstract function stealWork, which is used by the workers to populate
their deque. This function steals tasks by popping from the top of other deques. Various stealing
strategies can be used to implement this function. The collect function executes a collection
algorithm that reclaims the unreachable locations in the input heap set. The collection algorithm is
described later in the section.

The worker p first checks its deque (R(p)) for an available task. If the deque is empty, p executes
the stealWork function. The function call at line 5 returns after it is successful in the steal attempt.
The worker then pops off a new task from the bottom of its deque, creates a new heap for the task
and adds it to the heap set. We use the variable Tp to refer to the task that p is executing. Then it
proceeds as follows: at the start of each step, the worker checks if it needs to collectMp . If the size
ofMp is more than κ times the counter, the worker executes the collect function and updates its
local counter.
Otherwise, |Mp | is within limits, and the worker p executes an instruction of the task that it is

working on. When the task forks, the worker p executes the fork case. The fork case enqueues the
subtasks of Tp to the bottom of the deque and then breaks from the loop. As a result, the current
task is suspended and the worker returns to line 6. The worker then pops off one of the subtasks
from the bottom of the deque, creates a new heap for it and starts executing it.
When Tp is ready to join, the worker executes the join case. Note that for the join to execute,

the sibling task of Tp should have terminated. If it has not, then Tp becomes passive and its heap is
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1 λp: int // Size of live set

2 R(p): Deque.deque // Work deque

3 repeat

4 if Deque.empty(R(p)) then

5 R(p) ← stealWork()

6 Tp ← Deque.popBottom(R(p))

7 Hp ← NewHeap(Tp)

8 Mp ← Mp ∪ Hp

9 for each I in Instructions(Tp) do

10 if ( |Mp | ≥ κ · λp ) then

11 collect(Mp)

12 λp ← |Mp |

13 case I of

14 fork(T1,T2) →

15 Deque.pushBottom(T1)

16 Deque.pushBottom(T2)

17 break

18 join →

19 if sibling in R(p) then

20 break

21 else if sibling has not terminated then

22 // surrender to worker q where sibling(Hp) ∈ Mq

23 Mq ← Mq ∪Mp

24 Mp ← ∅

25 break

26 else // sibling has terminated:

27 Merge(Hp, sibling(Hp), parent(Hp))

28 Tp ← parent(Tp)

29 Hp ← Heap(Tp)

30 otherwise →

31 execute I

Fig. 6. Scheduling algorithm. The break is a control flow construct that exits the for loop.

reassigned to the worker that has the sibling heap. Let the sibling task ofTp beT ′p . When p executes
the join case, the following three cases arise:

case (i): Sibling task, T ′p , is in R(p). In this case, the worker breaks from the loop. It pops off
the sibling from the bottom of the deque and starts executing it.
case (ii): T ′p is not in R(p) and is not ready to join. In this case, p finds the worker q such that

H ′p ∈ Mq . The worker then surrenders all its heaps to q. Due to this transfer, the sibling
heaps are now assigned to the same worker, and whenT ′p terminates, the heaps can be joined

with their parent. This transfer does not involve copying of heaps (see Section 8 for more
details). In the next step, p will try to find another task to work on.
Note that such a worker q is guaranteed to exist because the sibling task T ′p is neither in the
deque nor is it ready to join. This means that it is either suspended or active. Therefore, the
heap corresponding to T ′p is in the heap tree and has to be in some worker’s heap set (the

heap sets partition the heaps of the heap tree).
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case (iii):T ′p is ready to join. In this case, the worker p can resume the execution of the parent
task since both of the subtasks have completed. The heaps of the subtasks are merged with
the parent’s heap. The Merge function does not copy the contents of the heaps and instead
does a ‘logical’ merge in constant time (see Section 8).

Instructions other than fork and join match with the otherwise case of the pseudo code. These
are simply executed without any updates to the state of the worker. Thus, if the worker p does
not change the task it is working on, no changes are made to Mp except if some other worker
surrenders and synchronizes with it.

5.2 Local Collection

Our collection algorithm is a tracing algorithm that first computes reachability by following pointers
from a root set and then collects the unreachable locations. It is local in the sense that it only traces
the pointers within the worker’s heap set. The set of reachable locations in a heap set, however,
also depends on pointers from heaps of other workers. We maintain remembered sets to ensure
that our algorithm does not have to scan for such pointers.

Remembered Set. A remembered set consists of locations of a heap set that may be referenced
by other heap sets. Locations of remembered sets are treated as roots and are assumed to be
reachable during the collection. Recall that the root set ρt is the set of locations referred by the
program at step t . The remembered set for worker p is such that reachability from it and the set ρt

while only following pointers in Mp is conservative. That is the reachability thus computed may
consider an unreachable location in Mp to be reachable but not vice-versa. Formally, we denote
E+p (ρ) as the set of reachable locations from ρ while following pointers withinMp and use E+µ (ρ) to

denote reachability while following every pointer in the memory store µ. The remembered set σ t
p

is such that

E+p (σ
t
p ∪ ρt ) ⊇ E+µ (ρ

t ) ∩ locs(Mp ).

Recall that disentanglement restricts the pointer dependence among heaps to up-pointers and
down-pointers. Thus, in the remembered set we only need to consider locations reachable from
these pointers. Let Ap be the set of ancestor heaps ofMp that are not at worker p. Similarly, let Sp
be the set of successor heaps that were stolen from worker p. Lastly, let Dp ⊇ Sp be the set of all the
heaps in Sp and their descendants. We use the term foreign to refer to tasks/heaps that correspond
to the descendant heaps in Dp . By disentanglement, the heaps in sets Ap and Dp are the only ones
with pointers into the heap set Mp . Since the set Ap corresponds to ancestor heaps, their tasks
are suspended. Thus, only foreign tasks can change reachability inMp . The remembered set σp is
updated based on actions of foreign tasks as follows:

(1) Steal. The program expression of a stolen task may have pointers into the heaps ofMp . Thus,
when a task is stolen from p all the locations referenced by it are added to σp .

(2) Pointer Deletion. If a foreign task deletes a pointer from ℓ in (Ap ∪Mp ) to ℓ
′ inMp , then we

add ℓ′ to σp .
(3) Down Pointer Update. Suppose some task creates a pointer from location ℓ in Ap to location
ℓ′ inMp . Since this is a new down pointer to a heap ofMp , the location ℓ

′ is added to σp .

The first two update rules ensure two properties: (i) All locations in the heap setMp reachable
from a foreign heap are reachable from the remembered set and, (ii) No action of a foreign task
changes reachability from the remembered set. A formal proof of these properties can be done
by induction. Property (i) holds at the time of steal when a new (foreign) heap is created because
we add all the up pointers from the new heap to the remembered set. At the inductive step, if a
foreign task creates a new pointer to some location inMp , then the location is reachable from its
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corresponding heap. By property (i) this location is also reachable from the remembered set. Thus
this new pointer does not change reachability in any way. Otherwise, if a foreign task deletes a
pointer to location ℓ then ℓ is reachable from its heap. By property (i) the location was reachable
from σp , before the deletion. After the deletion, we add ℓ to σp and ensure that it remains reachable.

The down pointer updates ensure that every location reachable from a down pointer is reachable
from the remembered set. Thus, the collection algorithm does not need to scan the ancestor heaps
Ap to compute reachability in heap set Mp . We make a simplifying assumption: if a location is
the target of a down pointer then it stays reachable until its heap merges with the heap of the
source (of the down pointer). This assumption does not affect the correctness of our algorithm
but it simplifies its analysis. With this assumption, the remembered set is not just conservative for
locations pointed by down pointers, it is also exact, i.e, if a location pointed by a down pointer is in
the remembered set then it is reachable.

The remembered set is also updated when some worker surrenders its heaps to worker p. Suppose
tasks Tp and Tq are sibling tasks on workers p and q respectively and worker q surrenders to p
after task Tq terminates. Before the surrender, the parent heap of siblings Hp and Hq is either on
worker p or on worker q. Consider the case in which the parent heap is on worker p. By definition,
heap Hq is a foreign heap. Since Hq is being surrendered to Mp , the pointers from it no longer
need to be remembered. Thus, all locations that correspond to ‘Steal’ or ‘Pointer Deletion’ action
by Tq are removed from the remembered set σp . Moreover, all the locations in the remembered
set of worker q (σq ) that correspond to down pointers from any heap ofMp are also deleted. The
remaining locations of σq are added to σp . The other case where the parent heap is on worker q
before the surrender is similar.

Cost Specification. Given a conservative remembered set for a heap setM and the root set ρt ,
the collection algorithm computes all the reachable locations in the heap set. Since the remembered
set is conservative, the algorithm only traces pointers within the heap set. The number of locations
and pointers in the heap setM are bounded by |M |. Thus, marking every reachable location takes
O(|M |) work and space using a procedure like depth first search. Moreover, a procedure that goes
through every location inM and reclaims the unreachable ones takes O(|M |) work. Thus, ifWc is
the work done by the collection algorithm andMc is its space complexity then,

(1) Wc < c1 · |M |

(2) Mc < c2 · |M |

The abstract description here skips some interesting practical details which we cover in the imple-
mentation section (Section 8). However, it shows that this specification is realistic.
The above constraints do not include the overhead of maintaining the remembered set σp . The

up pointers added when a task is stolen are stored in closure representation and we only need P of
them at any step. This overhead is bounded by κ ′ · P , where κ ′ is the size of the largest closure. The
number of locations added because of deleted pointers and new down pointers are loosely upper
bounded by the size of the heap set. Both of these can be accounted for by adjusting the constant
c2 above. We briefly mention how we implement them in Section 8.

6 SPACE BOUND

We give a space bound by comparing the memory used in a parallel execution (with garbage
collection) with the unordered reachable space in a sequential execution. To that end, we formalize
a sequential execution and its space usage.

Sequential Cost Semantics. To define a sequential execution, we replace the rules that evaluate
a parallel pair (ParL and ParR) by the inference rules in Figure 7. The rules ExL and ExR introduce
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ρ ∪ {locs(e2)} ⊢ µ ; T1 ; R ; e1 →
∗ µ ′ ; T ′1 ; R′ ; ℓ1 ρ ∪ {ℓ1} ⊢ µ

′ ; T2 ; R
′ ; e2 →

∗ µ ′′ ; T ′2 ; R′′ ; ℓ2

ρ ⊢ µ ; д ⊕ (T1 ⊗ T2) ; R ; ⟨e1 ∥ e2⟩ →L µ ′′ ; д ⊕ (T ′1 ⊗ T
′
2 ) ; R

′′ ; ⟨ℓ1 ∥ ℓ2⟩
ExL

ρ ∪ {locs(e1)} ⊢ µ ; T2 ; R ; e2 →
∗ µ ′ ; T ′2 ; R′ ; ℓ2 ρ ∪ {ℓ2} ⊢ µ

′ ; T1 ; R
′ ; e1 →

∗ µ ′′ ; T ′1 ; R′′ ; ℓ1

ρ ⊢ µ ; д ⊕ (T1 ⊗ T2) ; R ; ⟨e1 ∥ e2⟩ →R µ ′′ ; д ⊕ (T ′1 ⊗ T
′
2 ) ; R

′′ ; ⟨ℓ1 ∥ ℓ2⟩
ExR

ρ ⊢ µ ; д ⊕ (T1 ⊗ T2) ; R ; ⟨e1 ∥ e2⟩ →L µ ′ ; д ⊕ (T ′1 ⊗ T
′
2 ) ; R

′ ; ⟨ℓ′1 ∥ ℓ
′
2⟩

ρ ⊢ µ ; д ⊕ (T1 ⊗ T2) ; R ; ⟨e1 ∥ e2⟩ →R µ ′′ ; д ⊕ (T ′′1 ⊗ T
′′
2 ) ; R

′′ ; ⟨ℓ′′1 ∥ ℓ
′′
2 ⟩ R′ ≥ R′′

ρ ⊢ µ ; д ⊕ (T ′1 ⊗ T
′
2 ) ; R ; ⟨e1 ∥ e2⟩ → µ ′ ; д ⊕ (T ′1 ⊗ T

′
2 ) ; R

′ ; ⟨ℓ′1 ∥ ℓ
′
2⟩

PickL

ρ ⊢ µ ; д ⊕ (T1 ⊗ T2) ; R ; ⟨e1 ∥ e2⟩ →L µ ′ ; д ⊕ (T ′1 ⊗ T
′
2 ) ; R

′ ; ⟨ℓ′1 ∥ ℓ
′
2⟩

ρ ⊢ µ ; д ⊕ (T1 ⊗ T2) ; R ; ⟨e1 ∥ e2⟩ →R µ ′′ ; д ⊕ (T ′′1 ⊗ T
′′
2 ) ; R

′′ ; ⟨ℓ′′1 ∥ ℓ
′′
2 ⟩ R′′ > R′

ρ ⊢ µ ; д ⊕ (T ′1 ⊗ T
′
2 ) ; R ; ⟨e1 ∥ e2⟩ → µ ′′ ; д ⊕ (T ′′1 ⊗ T

′′
2 ) ; R

′′ ; ⟨ℓ′′1 ∥ ℓ
′′
2 ⟩

PickR

Fig. 7. Sequential Cost Semantics

new relations→L and→R . The relation→L ensures that the left component of the pair is evaluated
completely before the right component steps. The relation→R is analogous. These relations forbid
the interleaving evaluation of the left and right components. Thus, if we fix the ordering between
components, the evaluation becomes deterministic.

The sequential cost semantics introduces PickL and PickR to łpickž the order of execution with
higher space usage. We refer to the space usage computed by the sequential cost semantics as the
unordered reachable space or R∗. We use this as a baseline to compare with parallel execution.

Theorem 6.1 (Space Bound). Given a determinacy-race-free program with unordered reachable

space R∗, its parallel execution requires at most (c2·κ)·R
∗·P memory, where c2 is the space efficiency of

the collector and κ > 1 is an adjustable parameter in the collection policy.

Proof. In our collection policy, each worker maintains a counter and keeps the size of its heap
set within κ times this counter. If the size exceeds this limit, then the worker collects. For worker p,
|Mp | < κ·λp , where λp denotes the counter and |Mp | denotes the size of its heap set. By Lemma 6.2
(stated and proved below) the counter λp ≤ R∗. Thus, the size of Mp is less than κ·R∗ when the
worker is not collecting. The collection algorithm requires at most c2·|Mp | memory when it collects.
Thus, the maximum space used by worker p is c2·κ·R

∗. □

Bounding the counter. After every collection, the worker updates its counter to the size of
memory that survived the collection. Because the counter is not updated otherwise, its value
is bounded by this size. Suppose worker p starts a collection at step t , with the root set ρt and
remembered set σ t

p . With a remembered set, the collection algorithm only uses the pointers within

the worker’s heap set to compute reachability. Let E+p (ρ
t ∪ σ t

p ) be the set of reachable locations.

After every collection, the counter λp is set to |E+p (ρ
t ∪ σ t

p )|. We bound its size as follows:

Lemma 6.2. At any step t of a parallel execution, the size of objects reachable from the root set and

the remembered set is bounded by the unordered reachable space. Equivalently, |E+p (ρ
t ∪ σ t

p )| ≤ R∗.

Proof. In the sequential semantics (Figure 7), the rules ExL and ExR allow a choice on the
evaluation order of parallel pairs. We define a particular order by specifying a precedence relation
(<p ) on every pair. Suppose at step t of some parallel execution P, the worker p is executing task

Proc. ACM Program. Lang., Vol. 5, No. POPL, Article 18. Publication date: January 2021.



18:16 Jatin Arora, Sam Westrick, and Umut A. Acar

TA. Let the root to leaf path in the task tree be Tpath = TA0,TA1 . . .TAn . , where TAn = TA. Also, let
TB1 . . .TBn be the siblings of the tasks on Tpath. We define the precedence relation for tasks in Tpath
(and their siblings) as follows:

(1) If the task TBi has terminated by step t , then TBi <p TAi .
(2) Otherwise, if TBi has not terminated by step t , then TAi <p TBi

For the other siblings, let the relation <p be defined arbitrarily. This relation orders every parallel
pair and defines a sequential execution S. The sequential execution starts with the root task TA0.
Then, the order of execution for any two siblings T1 and T2, is given by the precedence relation. If
T1 <p T2 then T1 is evaluated completely before T2 is executed. Otherwise T2 is evaluated first.

Since we only consider deterministic programs, there is some step (t ′) at which S executes the
instruction that worker p executes at step t . Let Pt and St

′
denote the set of instructions that have

been executed till step t and t ′ respectively. We show that the reachability in the heap set Mp is

exactly the same after executing the instructions in Pt and St
′
.

Let TMp be the set of tasks that correspond to heaps in Mp . Let TSp be the set of successor
tasks that were stolen from worker p and, let TDp ⊇ TSp be the set of all the tasks in TSp and
their descendants. The tasks in TSp are siblings of tasks on Tpath. Because the heap hierarchy is
disentangled and there are no cross pointers, i.e., the reachability inMp only depends on pointers
from ancestors and descendants. Since ancestor tasks are suspended, the reachability inMp only
depends on pointers created/deleted by two types of tasks: (i) Tasks in TMp , and (ii) Tasks in TDp .
First, consider a task T ∈ TMp . The following two cases arise:

(1) T ∈ Tpath. By definition, all tasks on the path are ancestors of TA. Since at steps t and t
′, both

executions are at the same instruction of task TA, they have executed the same instructions
of ancestors of TA. Thus, exactly the same instructions of T are in Pt and St

′
.

(2) T < Tpath. We use the following property of tasks in TMp
2:

T < Tpath iff T is a passive leaf and a sibling of some task on Tpath

By this property,T is passive (has terminated) and is a sibling of some taskT ′ ∈ Tpath. Because
task T has terminated by step t , it is ordered before its sibling T ′, i.e., T <p T

′. Thus, the task

T must have been evaluated completely in St
′
and has terminated by step t ′.

Hence, for all the tasks of the first type, the same instructions have been executed in Pt and St
′
.

Now consider a task T ∈ TDp . We refer to tasks in TDp as foreign. Recall that the remembered
sets are updated so that no action of a foreign task changes reachability inMp (Section 5.2). Thus,
at step t in the parallel execution P, reachability is computed as if T has not executed at all. Let
T ′ ∈ TSp be defined as follows:

T ′ =

{

T, if T ∈ TSp
T ′, if T < TSp and T ′ is that ancestor of T which is in TSp

}

Since T has not terminated by step t , T ′ has not terminated as well. By definition of the set TSp ,
T ′ is a sibling of some task in TMp . By construction, T ′ is ordered later than its sibling in the
sequential execution and has not been executed (because the sibling has not terminated). Thus, in
the sequential execution T has really not executed till step t ′.
Hence for both types of tasks same instructions of Pt and St

′
are considered for reachability.

The reachable memory in the heaps ofMp is thus identical in both. Note that R∗ is an upper bound
on the reachable space of sequential execution. Thus, |E+p (ρ

t ∪ σ t
p )| ≤ R∗. □

2We present this property without proof. The proof follows directly from description in Section 4
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7 WORK BOUND

The collection algorithm performs c1 · |M | units of work to collect |M | amount of memory. We
prove the following bound on the work done in all the collections:

Theorem 7.1 (Work Bound). If a program’s execution requiresW units of work, then the work

done in garbage collection is upper bounded by k ′ · (W + P · R∗), where k ′ = c1 ·
κ

κ−1
, κ is set by the

collection policy, c1 is the work efficiency of the collector and R∗ is the unordered reachable space.

Proof. Let |M i
p | be the size of heap set before the ith collection on worker p. If λi+1p is the size of

heap set after the collection, then the memory reclaimed is (|M i
p | − λ

i+1
p ). The memory reclaimed by

all the collections can not be greater than the memory allocated by the program. Thus, if worker p
performs np collections and α is the total memory allocated then:

∑

p

i=np
∑

i=1

(|M i
p | − λ

i+1
p ) ≤ α (1)

In our collection policy, a worker starts a collection only when the size of its heap set grows beyond
κ times its counter, i.e, the worker p starts the ith collection because |M i

p | ≥ κ ∗ λip . Moreover, by
Lemma 6.2, the value of the counter λp does not exceed R∗. Thus, it follows that:

∑

p

i=np
∑

i=1

λi+1p ≤
∑

p

i=np
∑

i=1

λip +
∑

p

λ
(np+1)
p ≤

∑

p

i=np
∑

i=1

|M i
p |

κ
+ P · R∗

After substituting this in Equation 1, it follows that:

∑

p

i=np
∑

i=1

|M i
p | ≤ (α + P · R

∗) ·
κ

κ − 1
≤ (W + P · R∗) ·

κ

κ − 1

We assume that allocation of one unit of memory requires one unit of work and thus, α ≤W . The

total memory traced in all collections is (
∑

p

∑i=np
i=1 |M

i
p |). Thus, the total work done in collections

is upper-bounded by c1 · (
∑

p

∑i=np
i=1 |M

i
p |) ≤ c1 · (W + P · R

∗) · κ
κ−1

. □

8 IMPLEMENTATION

We implement our techniques on top of MaPLe (MPL) [Westrick et al. 2020]. MPL extends the
MLton compiler (a compiler for Standard ML) to support nested parallelism by providing a primi-
tive par: (unit → α) * (unit → β) → α * β which takes two functions and executes them in
parallel to return their results. Our new implementation, which we callMPL* 3, differs mainly in
how it garbage-collects heaps. That is, whileMPL is unable to collect shallow suspended heaps,
ourMPL* is able to perform garbage collection on all heaps.

Scheduling Tasks and Heaps. For load-balancing tasks across worker threads (OS threads),
MPL* uses a work-stealing scheduler with private deques. Whenever a new task begins execution,
the scheduler creates a new heap for it. The implementation is faithful to the pseudo-code described
in Section 5, except for surrender. The pseudo-code assigns sibling heaps to the same worker as
soon as one of them becomes passive. We implement a lazy form of surrendering in which the
heaps are transferred only after both siblings are ready to join.

The task abstraction is a one-shot continuation with an additional data structure that stores its
depth, its parent task and its heap. A heap is a doubly-linked list of fixed-size blocks (chunks) in

3https://github.com/MPLLang/mpl/tree/popl21-artifact
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a global/uniform address space. This makes it possible to merge (and surrender) heaps without
copying any data; their block-lists are just linked together.

Remembered Sets. As described in Section 5.2, each worker’s remembered set maintains point-
ers from descendants at other worker’s heaps. We instead maintain (up) pointers from every
descendant heap, irrespective of which worker it is on. This simplification allows us to garbage-
collect each internal heap independently. It amounts to snapshotting internal heaps at the time of
the fork, i.e., no object of an internal heap becomes unreachable while its descendants execute. To
that end, we maintain a remembered set for each heap (instead of maintaining one per worker).
The remembered set of a heap consists of three components: up pointers from its descendants,
internal pointers deleted by descendants, and down pointers from ancestors.

Each time a task forks, its subtasks’ continuations are copied and added to its heap’s remembered
set. The continuations contain all the up pointers to the parent heap. Moreover, we track every
update to mutable data using a write-barrier. An update may delete a pointer from x[i] (field i of
object x ) to y. To prevent updates from changing reachability in internal heaps, the write-barrier
checks if x and y are in the same internal heap and, adds an entry (x, i,y) to the remembered set.
The write-barrier also checks if the update results in a down pointer. If an update creates a pointer
from x[i] to y, the barrier checks if x is in an ancestor heap. If so, it adds the entry (x, i,y) to the
remembered set of the heap containing y. The write-barrier uses blocks to identify the depth of
an object. Since the block sizes are fixed, the block of an object can be identified by zeroing the
low-order bits of its memory address. Each block is associated with a descriptor that points to the
meta-data of the heap it belongs to. The heap’s meta-data tracks its depth.

Garbage Collection. For performance reasons, we use different algorithms for different heaps.
Because disentanglement forbids cross pointers, the objects in leaf heaps are not referenced by
other leaves. Internal heaps whose siblings are still in the deque also satisfy this property. We refer
to such heaps as private heaps because the concurrently executing leaves do not have pointers into
them. This property allows us to garbage-collect private heaps with a moving/copying collector.
For better efficiency, the collector starts with a promotion phase that copies objects referenced by
down pointers to the corresponding ancestor heaps. A promotion may create new down pointers,
so the phase is repeated until no down pointers remain. The performance benefit of promoting
objects is two-fold: (i) A promoted object is not copied until the ancestor becomes a leaf and, (ii)
No down pointers remain in the remembered set. After the promotion phase, the tracing phase
performs a Cheney-style collection. It copies the reachable objects to new locations and updates
all references to them. Because the objects are private, we do not synchronize for updating the
references at any step. MPL’s runtime performs this copying collection on private heaps. MPL*

extends it with the collection of non-private internal heaps.
Internal heaps that are not private are collected using the mark and sweep algorithm. Because

remembered sets snapshot the internal heaps, the collection can be done independently for every
heap. In our implementation, the worker pauses its task until it finishes the collection of all the
heaps. However, we specialize the root heap for better parallel performance: if the root heap belongs
to a worker’s heap set, it does not collect it right away. Instead, the worker creates another task for
collecting the root heap and adds it to its deque. The task’s continuation is designed to contain
all the (collector) roots for the heap. The continuation can be stolen by another worker to collect
the heap concurrently. While the worker (that stole) collects the root heap, the root task may
become a leaf and start adding new objects to the root heap. To avoid synchronization between the
allocating worker and the collecting worker, we create a secondary root heap for new allocations.
The secondary root is the only child of the primary root. However, unlike other parent and children
heaps, we do not maintain down pointers or up pointers between the root heaps. This is because the
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secondary root is not subject to collection until the primary root is collected. After the collection at
primary root completes, the root heaps are merged.

9 EVALUATION

To evaluate our implementation of the proposed techniques, we present multiple comparisons.
First, we present a high-level łsorting competitionž between MPL* (our implementation) and two
state-of-the-art parallel systems with automatic memory management: Java and Go. Next, we
consider a suite of parallel benchmarks from numerous problem domains, including graph analysis,
numerical algorithms, computational geometry, raytracing, image and audio manipulation, text
processing, sorting, etc. On these benchmarks, we compare the performance of MPL* against
MLton andMPL to determine the overheads, scalability, and space benefits of our techniques. These
comparisons collectively demonstrate that

(1) In comparison to state-of-the-art procedural languages with automatic memory management,
MPL* can scale better while using comparable amount of space.

(2) MPL* has low overhead, in terms of both time and space, in comparison to a fast, well-
established sequential baseline.

(3) MPL* scales well up to high core counts.
(4) In comparison toMPL, ourMPL* has a small penalty in time but uses significantly less space:

up to -99% on one core, and up to -86% on 70 cores.

9.1 Experimental Setup

We run all of our experiments on a 72-core Dell PowerEdge R930 consisting of 4 × 2.4GHz Intel
18-core E7-8867 v4 Xeon processors and 1TB of memory, running Ubuntu version 16.04.6. For each
benchmark, we run 10 trials and report averages, where each trial yields one time measure and
one space measure. Each trial runs the benchmark 10 times back-to-back (in the same program
instance) and measures the cumulative time taken for these 10 runs. We measure the space usage of
one trial with maximum residency, as reported by Linux with /usr/bin/time -v. This is a system-
independent measure, allowing us to compare space usage across systems, despite differences in
memory management (e.g. heap architecture).
To account for warmup and initialization costs, we begin each trial with 5 warmup runs of the

benchmark, which are excluded from the timing results. Note however that the space numbers
reported include the costs of initialization and warmup.
In the sorting competition, for Java we use OpenJDK 1.8.0_222 with -XX:+UseParallelGC,

and for Go we use version 1.8.1 with default settings.
For MPL, MPL*, Java, and Go, we write Tp and Rp respectively to denote the time and space

usage on p processors. For MLton, we write Ts and Rs . All timings are in seconds and all space
numbers are in gigabytes (GB).

9.2 Parallel ML Benchmark Overview

Here we describe the 15 benchmarks used for the MLton and MPL comparisons in Section 9.4.
Note that the reported timings and max residency results are cumulative over multiple runs of each
benchmark, as described in Section 9.1.
Centrality computes single-source betweenness centrality, based on the Ligra implementa-

tion [Shun and Blelloch 2013]. The input is a randomly generated power-law graph [Chakrabarti
et al. 2004] with approximately 16.7M vertices and 199M edges, symmetrized.4 Dedup computes the
set of unique words of an input text by first separating the text into words, and then deduplicating

4A symmetrized graph is an undirected graph where each edge is represented as two directed edges.
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the words by hashing. The input text is approximately 60MB with 6.3M words and 99K unique
words. Dense-Matrix Multiplication (dmm) multiplies two 1024 × 1024 dense matrices of 64-bit
floating-point elements using the simple O(n3)-work algorithm. Grep is an implementation of
the Unix grep utility. The input text is 60MB with 6.3M lines, and the search pattern appears on
138K lines.Mergesort (msort) sorts 10M 64-bit integers. The input is uniformly random, generated
by a hash function. Nearest-Neighbors (nn) computes all nearest neighbors within a set of 2D
points (i.e. for each point, the nearest other point within the set) by constructing an intermediate
quad-tree and then querying it in parallel. The input is 1M points distributed uniformly randomly
within a square. Palindrome finds the longest (contiguous) substring which is a palindrome using
a polynomial rolling hash. The input is 1M characters. Primes generates all prime numbers that
are less than 100M (approximately 5.8M primes) with a parallel sieve. Quickhull computes the
convex hull of 10M uniformly random points distributed within a circle. Random generates 1B
pseudo-random 64-bit numbers with a hash function. Raytracer (ray) computes an image of
1000 × 1000 pixels by ray-tracing. Reverb applies an artificial reverberation effect to an audio file.
The input is approximately 4 minutes long with a sample rate of 44.1 kHz at 16 bits per sample.
Seam-carve is a parallel implementation of the seam-carving [Avidan and Shamir 2007] technique
for content-aware rescaling. This benchmark removes 100 vertical seams from a panoramic image
of approximately 1.5M pixels. Suffix-array computes the suffix array of a uniformly random input
text of 10M characters. Tokens separates a text into tokens, using whitespace as delimiters. The
input text is approximately 60MB with 6.3M tokens.

9.3 Sorting Competition

In this section we present the results of a łsorting competitionž between MPL*, Java, and Go.
We chose Java and Go because both are state-of-the-art parallel systems with automatic memory
management. Other comparisons would also be possible: for example,MPL has previously been
compared against both Cilk and Haskell in a similar experiment [Westrick et al. 2020]. We do
not include these comparisons because Cilk does not have automatic memory management, and
Haskell was found to not scale up to high core counts.

To conduct this experiment, we obtained highly optimized parallel sorting implementations for
each system. The Java implementation is the standard java.util.Arrays.parallelSort, written
by Doug Lea for the Java Fork/Join library [Lea 2000]. The Go implementation is a highly optimized
samplesort (based in part on the PBBS samplesort [Blelloch et al. 2010; Shun et al. 2012]). For
MPL*, we provide a mergesort. The input (identical in all cases) is an array of 100M 32-bit integers
generated by a hash function, and we require that the input is not modified: the sorted result must
be returned as a freshly allocated array. Note that the results are cumulative over multiple runs of
the sorting routine, as described in Section 9.1.

The results are shown in Figures 8 and 9. Figure 8 gives the time and space usage of each system,
and Figure 9 shows the speedups relative to the fastest sequential time (i.e. Java). In general, we
observe that all systems perform within a factor two of one another in terms of both space and
time. GoÐalthough slowest on one coreÐhas a memory footprint half the size of bothMPL* and
Java, which use approximately the same amount of memory. In terms of parallelism, Java only
scales linearly up to approximately 20 processors, whereas both MPL* and Go scale nearly linearly
up to 70 cores. OurMPL* is the fastest on large core counts by a wide margin. On 70 processors,
MPL* is 35% faster than Go and nearly twice as fast as Java.

9.4 Comparison with MLton and MPL

In this section, we compare ourMPL* againstMPL andMLton using the benchmarks detailed in
Section 9.2. We use MLton as a sequential baseline to compute overheads, speedups, and space
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Time Space

T1 T70 R1 R70

MPL* (Ours) 219 4.08 6.65 8.82

Java 139 7.52 6.28 7.90

Go 272 6.23 3.77 3.37

Fig. 8. Sorting competition.
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Fig. 9. Sorting competition speedups (Java T1
used as baseline).
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Fig. 10. Speedups of MPL* in comparison to MLton.

Ts T1 Overhead T70 Speedup

MLton MPL
MPL*

(Ours)
MPL

MPL*

(Ours)
MPL

MPL*

(Ours)
MPL

MPL*

(Ours)

centrality 116 163 164 (+1%) 1.41 1.41 4.60 4.75 (+3%) 25 24

dedup 20.4 30.1 31.1 (+3%) 1.48 1.52 0.87 0.90 (+3%) 23 23

dmm 18.7 28.7 29.3 (+2%) 1.53 1.57 0.54 0.55 (+2%) 35 34

grep 5.61 9.10 8.73 (-4%) 1.62 1.56 0.24 0.25 (+4%) 23 22

msort 15.8 19.3 19.3 (+0%) 1.22 1.22 0.45 0.46 (+2%) 35 34

nn 11.2 13.6 14.5 (+7%) 1.21 1.29 0.53 0.66 (+25%) 21 17

palindrome 16.1 16.8 17.9 (+7%) 1.04 1.11 0.37 0.39 (+5%) 44 41

primes 17.7 76.1 73.0 (-4%) 4.30 4.12 1.28 1.28 (+0%) 14 14

quickhull 9.95 12.5 16.2 (+30%) 1.26 1.63 0.53 0.60 (+13%) 19 17

random 45.0 58.1 52.6 (-9%) 1.29 1.17 1.11 1.21 (+9%) 41 37

ray 26.7 25.8 25.7 (+0%) 0.97 0.96 0.51 0.52 (+2%) 52 51

reverb 27.5 32.2 29.9 (-7%) 1.17 1.09 1.09 1.30 (+19%) 25 21

seam-carve 119 161 158 (-2%) 1.35 1.33 9.23 9.99 (+8%) 13 12

suffix-array 45.7 52.8 52.3 (-1%) 1.16 1.14 1.29 1.34 (+4%) 35 34

tokens 5.98 7.34 7.75 (+6%) 1.23 1.30 0.21 0.22 (+5%) 28 27

Fig. 11. Times (seconds), overheads, and speedups of MPL and MPL* in comparison to MLton. Percent

differences of MPL* are relative to MPL.

blowup factors. All results are shown in Figures 10, 12, and 11. Figure 10 plots the speedups of MPL*

across multiple processors counts. Figure 11 gives timings, overheads, and speedups. Figure 12
shows space (max residency) results and blowups. In Figures 11 and 12, the percent difference
of MPL* with respect to MPL is shown in the Tp and Rp columns for MPL*. Negative percent
differences indicate improvements (in time or space).
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Rs R1 Blowup1 R70 Blowup70

MLton MPL
MPL*

(Ours)
MPL

MPL*

(Ours)
MPL

MPL*

(Ours)
MPL

MPL*

(Ours)

centrality 25 36 17 (-53%) 1.4 0.7 38 20 (-47%) 1.5 0.8

dedup 3.6 11 3.7 (-66%) 3.1 1.0 10 9.7 (-3%) 2.8 2.7

dmm 0.10 0.20 0.13 (-35%) 2.0 1.3 0.49 0.46 (-6%) 4.9 4.6

grep 2.6 5.3 1.2 (-77%) 2.0 0.5 3.3 2.8 (-15%) 1.3 1.1

msort 2.2 2.9 1.3 (-55%) 1.3 0.6 3.6 2.4 (-33%) 1.6 1.1

nn 1.3 4.1 1.2 (-71%) 3.2 0.9 4.4 3.8 (-14%) 3.4 2.9

palindrome 0.20 0.38 0.15 (-61%) 1.9 0.7 0.67 0.65 (-3%) 3.4 3.2

primes 1.5 2.6 0.86 (-67%) 1.7 0.6 3.0 1.8 (-40%) 2.0 1.2

quickhull 3.5 4.0 3.0 (-25%) 1.1 0.9 4.9 5.3 (+8%) 1.4 1.5

random 121 120 48 (-60%) 1.0 0.4 120 48 (-60%) 1.0 0.4

ray 0.40 1.0 0.27 (-73%) 2.5 0.7 1.8 1.5 (-17%) 4.5 3.8

reverb 8.3 45 4.2 (-91%) 5.4 0.5 48 6.8 (-86%) 5.8 0.8

seam-carve 0.41 47 0.35 (-99%) 114.6 0.9 75 15 (-80%) 182.9 36.6

suffix-array 6.3 13 2.4 (-82%) 2.1 0.4 14 3.4 (-76%) 2.2 0.5

tokens 3.8 3.9 1.6 (-59%) 1.0 0.4 4.3 3.4 (-21%) 1.1 0.9

Fig. 12. Max residencies (GB) and space blowups. Percent differences of MPL* are relative to MPL.

Speedups. The speedup of MPL* (and similarly for MPL) on p processors is given by Ts/Tp .
This quantity summarizes the benefit of parallelism as an improvement factor relative to a fast
sequential baseline. A speedup of Ts/Tp = p would indicate perfect speedup, i.e. full utilization of
all p processors. Perfect speedup is uncommon, even for embarrassingly parallel benchmarks, due
to overheads of parallelism and memory bottlenecks on modern multicores. Typically, we expect
to see speedups scale linearly with the number of processors but then plateau as the memory
bandwidth of the machine is reached, particularly for łmemory-boundž benchmarks.

In Figure 10, we observe two primary behaviors, as expected. Most benchmark can be classified
as either compute-bound or memory-bound: the compute-bound benchmarks (e.g. ray, palindrome,
dmm, primes) all scale approximately linearly, whereas the memory-bound benchmarks (e.g. reverb,
nn, quickhull, seam-carve) each initially scale linearly and then plateau as the memory bandwidth
of the machine is reached. In all cases, as the number of processors increases, the speedup either
stays approximately the same or increases.

In Figure 11, we see that on 70 cores, MPL* achieves between 12× and 51× speedup over MLton.
Across the board, these speedups are similar to those obtained by vanilla MPL: on 70 cores, MPL*

is at most 25% slower than MPL, with 12 out of 15 benchmarks within a ±10% difference. The fact
that MPL* is just as fast as MPL on high core counts suggests that the possible O(R∗P) additional
work due to GC (Theorem 7.1) could be loose in practice.

ForMPL*, the lowest speedup (12× on 70 cores) is seam-carve, which is expected due to three
factors. First, seam-carving not highly parallel: in an image of widthw and height h, seam-carving
has O(wh) work and O(h) span, leaving only O(w) parallelism, which for typical images is small.
Second, seam-carving is memory-bound: it only does a small amount of compute (a few arithmetic
instructions) per memory access. Third, seam-carving has a high allocation and reclamation rate:
this particular implementation is łpurež in the sense that removing one seam does not modify
the input image, so in total the benchmark allocates approximately 100 copies of the input image,
which stresses the memory management system. In light of these bottlenecks, a speedup of 12× for
seam-carving is admirable. Another case of low speedup is primes, which is explainable entirely
due to its overhead (discussed below): in fact, MPL* has an excellent łself-speedupž of T1/T70 = 57.
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Overheads. To summarize the cumulative impact of parallelization as a slowdown factor, we
compute the overhead of MPL* as T1/Ts where T1 is the time on 1 processor and Ts is MLton’s
sequential runtime. Overheads larger than 1 indicate thatMPL* is that many times slower than
MLton. We also compute the overhead of vanilla MPL for comparison.

In almost all cases, we observe thatMPL* is less than 60% slower thanMLton. The one exception
is the primes benchmark, where MPL* is more than 4× slower than MLton on one processor (and
despite this,MPL* still manages to achieve 14× speedup overMLton). Note thatMPL also has a
similar overhead on this benchmark, suggesting that there are differences in the underlying MLton

and MPL compilers influencing the performance of this benchmark.
In general, the differences betweenMPL* andMPL are small on one processor:MPL* is anywhere

from 9% faster to 30% slower than MPL, and all benchmarks except for one show less than a ±10%
difference. Overall, the time costs of our extensions to MPL appear to be relatively low.

Space Efficiency. In Figure 12, we immediately observe that MPL* offers significant space im-
provements overMPL. On a single processor, these improvements range from 25% to 99%. On 70
processors,MPL* uses up to 86% less memory.

To better understand the relationship between sequential and parallel execution, we also consider
here the space blowup of the parallelism. Denoted Bp , the space blowup of MPL* (and similarly
forMPL) on p processors is defined as Bp = Rp/Rs where Rp is the max residency of MPL* on p
processors, and Rs is the max residency of MLton. The blowup summarizes the space overhead
of parallelism, which broadly consists of two factors: (1) differences in memory management, e.g.
concurrent versus stop-the-world GC, and (2) the inherent additional space required to execute a
program in parallel.
We can relate blowup to Theorem 6.1 by taking Rs as an approximation of kR∗ where k is

the łsloppinessž factor of MLton’s GC implementation.5 MLton will use up to a factor k more
space than the program needs, so the approximation Rs ≈ kR

∗ should be accurate as long as each
benchmark needs R∗ space sequentially. We believe this is the case for the following reasons. First,
note that for MLton, we replaced parallel pairs with sequential pairs. This induces a left-then-right
sequential schedule, which is one of the possible schedules for witnessing R∗ maximum reachable
memory. But this immediately raises the question: is it possible that some other sequential schedule
has a much larger maximum reachability? For well-parallelized programs, this seems unlikely,
because parallelization relies upon good load-balancing of all costs, including allocation. Therefore,
it seems reasonable to assume that all sequential schedules of a well-parallelized program need
approximately R∗ space.

Taking Rs ≈ kR
∗, Theorem 6.1 suggests that we should expect forMPL* to have approximately at

most linear blowup, i.e. Bp ⪅p. Indeed, in Figure 12, we observe in almost all cases that Bp ≤ p. (The
only exception is dmm with B1 = 1.3, where the total memory used is small, so the difference could
be due to unavoidable additive overheads such as the extra memory needed for the scheduler.) There
is only one benchmark where the parallel blowup is large: seam-carve, with B70 ≈ 37. Seam-carve
is a challenging benchmark for a number of reasons (described above in the Speedups paragraph);
in particular, it is memory intensive, with a high rate of allocation. Note that the space blowup
on seam-carve is nevertheless within expected bounds. Furthermore, MPL* sees one of its largest
space improvements over vanillaMPL on this benchmark (between 80% and 99% improvement).

Surprisingly, we observe that the blowup on 70 processors is often much less than 70. Out of 15
benchmarks, 9 of them have B70 < 2, and 5 benchmarks even have B70 < 1. On these 5 benchmarks
(centrality, random, reverb, suffix-array, and tokens),MPL* is more efficient thanMLton in terms
of both space and time: it uses less space overall while being up to 21 and 37 times faster.

5ForMLton with default settings, k ≈ 16.
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To summarize, the space measurements show that

(1) MPL* offers significant space improvements overMPL.
(2) MPL* uses only a small amount of extra space to achieve significant parallel speedup over

MLton. On some benchmarks, MPL* consistently uses less space than MLton.
(3) Theorem 6.1 appears to hold in practice, even despite the simplifications made for a practical

implementation. It is also possible that the O(R∗P) space bound is very loose in practice.

10 RELATED WORK

Cost Semantics. To establish our bounds, we use a cost semantics that keeps track of work,
space usage, and yields a task tree of the computation. The task tree allow us to reason about the
intrinsic properties of the computation (threads/concurrency created and their relationships). For
our bounds, we use a notion of reachability that accounts for the different orders in which parallel
pairs may be executed in a sequential computation. This notion is quite interesting: it does not
account for all interleavings of the parallel pairs, but just two specific ones, where the left completes
before the right starts, and the right completes before the left starts.
Cost semantics have proved to be an effective tool for reasoning about non-trivial properties

of the computation. The idea of cost semantics goes back to the early 90s [Rosendahl 1989; Sands
1990a] and has been shown to be particularly important in high-level languages such as lazy
(e.g., Sands 1990a,b; Sansom and Peyton Jones 1995) and parallel languages (e.g., Acar et al. 2018,
2016a; Blelloch and Greiner 1995, 1996; Spoonhower et al. 2008). Aspects of our cost semantics
resemble prior cost semantics used in parallel languages [Acar et al. 2018, 2016a; Blelloch and
Greiner 1996; Spoonhower et al. 2008], though the specifics such as our use of task trees and our
specific notion of reachability measure differ.

Scheduling. Nearly all modern parallel programming languages today rely on a scheduler to
distribute threads over hardware resources so that the programmer does not have to control it
manually. This is important as, manual thread scheduling can be very challenging, especially for
multiprogrammed environments.

Early results on scheduling goes back to seventies and to the work of mathematician Brent [Brent
1974]. Brent’s result was later generalized to greedy schedulers [Arora et al. 2001; Eager et al. 1989].
Blumofe and Leiserson [Blumofe and Leiserson 1999] and later Arora, Blumofe, and Plaxton [Arora
et al. 1998]. proved that randomized work stealing algorithm can generate efficient greedy schedules
łon-the-flyž, also onmultiprocessor systems. More recent work extended these techniques to account
for the cost of thread creation [Acar et al. 2018, 2016a; Tzannes et al. 2014] and responsiveness or
interactivity [Muller et al. 2020; Muller and Acar 2016; Muller et al. 2017, 2018a] Our implementation
is based on a variant of the work stealing algorithm based on private deques [Acar et al. 2013].

The space consumption of various scheduling algorithms have also been studied [Agarwal et al.
2007; Blelloch et al. 1999; Blumofe and Leiserson 1998; Narlikar and Blelloch 1999], as well as
their locality properties [Acar et al. 2015, 2002; Blelloch et al. 2011; Blelloch and Gibbons 2004;
Chowdhury and Ramachandran 2008; Lee et al. 2015; Spoonhower et al. 2009]. But, none of these
works consider garbage collection and the impact of thread scheduling on garbage collection. For
example Blumofe and Leiserson [Blumofe and Leiserson 1999] establish space bounds similar to
ours but assume a restricted form of łstack-allocated computationsž that use work stealing, where
all memory is allocated on the stack, and all memory allocated by a function call is freed upon
returning from that call. Stack allocation is a rather unrealistic assumption for most programming
languages, because even non-managed languages such as C/C++ permit heap allocated objects.
They assume instead that programs follow a specific allocation strategy, typically łstack allocationž,
where objects that are allocated by deeper calls cannot be returned without being copied explicitly.
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One of our key contribution is the bounds accounting for heap allocated objects and garbage
collection.

Memory Management. Since its early days in the Lisp language, automatic memory management
has come a long way and has become a popular and a prominent feature of modern programming
languages. The book by Jones et al. [Jones et al. 2011] discuss many garbage-collection techniques
incorporating parallelism, concurrency, and real-time features. There is, however, relatively little
work on the problem of parallel memory management for functional languages that support nested
parallelism, where programs may create many (e.g., millions of) fine grained threads, which are
scheduled by a (usually highly nondeterministic) scheduler.
Although our results are related to the work in the broader area of memory management, they

are also different in an important aspect. Our primarily concern is the partitioning of memory
between processors dynamically in a parallel computation so that each processor can decide
individually and independently when to perform garbage collection (without synchronizing with
others). For the actual garbage collection, we allow each processor to use any garbage collection
algorithm as long as it meets certain basic criteria (Section 5.2). In our implementation, we use
sequential copying and in-place concurrent collectors. But other collection algorithms, including
multiprocessor, incremental algorithms could be used instead.

In the rest of this section, we describe some of the closely related work in the area of functional
programming and in approaches that aim to provide provable guarantees.

There are many provably space and work efficient algorithms for garbage collection for unipro-
cessor computing models. Similar provable algorithms for multiprocessors or parallel systems
are more scarce. One notable exception is the algorithm of Blelloch and Cheng [Blelloch and
Cheng 1999; Cheng and Blelloch 2001], which is able to achieve tight space and time bounds. The
algorithm, however, is primarily meant for real-time garbage collection and has several short-
comings, including its complex synchronization and load-balancing techniques, and its relatively
liberal space usage [Bacon et al. 2003]. Follow-up work has overcome some of these limitations,
though sometimes by assuming the uniprocessor model [Bacon et al. 2003; Pizlo et al. 2008]. These
real-time algorithms may be used in conjunction with our heap scheduling algorithm in real-time
applications.
Within the world of parallel functional programming, we can distinguish between two main

architectural approaches to memory management, none of which has (until this paper) was able to
establish tight space and work bounds.

The first approach uses processor-local or thread-local heaps combined with a shared global heap
that must be collected cooperatively [Anderson 2010; Auhagen et al. 2011; Doligez and Gonthier
1994; Doligez and Leroy 1993; Domani et al. 2002; Marlow and Jones 2011]. This design is employed
by the Doligez-Leroy-Gonthier (DLG) parallel collector [Doligez and Gonthier 1994; Doligez and
Leroy 1993] and the Manticore garbage collector [Auhagen et al. 2011; Le and Fluet 2015]. They
enforce the invariant that there are no pointers from the shared global heap into any processor-local
heap and no cross pointers between processor local-heaps. To maintain this invariant, all mutable
objects are allocated in the shared global heap and (transitively reachable) data is promoted (copied)
from a processor-local heap to the shared global heap when updating a mutable object. The Glasgow
Haskell Compiler (GHC) uses a garbage collector [Marlow and Jones 2011] that follows a similar
architecture but also employs techniques similar to Domani et al. [Domani et al. 2002]. The collector
allows pointers from global to local heaps and relies on a read barrier to promote (copy) data to
the global heap when accessed. Recent work on a multicore memory manager for OCaml uses
several techniques to reduce the cost of promotions [Sivaramakrishnan et al. 2020]. None of these
approaches can guarantee space and work/time bounds, because they rely on absence of pointers
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from shared to private heaps; as a result common scheduling actions, such as migrating a thread or
returning the result of a child task, can require copying (promoting) the objects reachable from a
migrated thread to the shared heap.
The second approach is due to more recent work on disentanglement [Acar et al. 2015; Guatto

et al. 2018; Raghunathan et al. 2016; Westrick et al. 2020]. In that work, the authors associate heaps
with tasks rather that system-level threads or processors and organize the memory as a dynamic
hierarchy that can be arbitrarily deep and grows and shrinks as the computation proceeds. Pointers
between heaps that have ancestor-descendant relationships are allowed but cross pointers between
concurrent heaps are not allowed. Therefore, disentangled parallel programs can return the result
of a child task and migrate threads without copying (promoting) data and concurrent threads
can share the data allocated by their ancestors. The absence of cross-pointers usually require no
significant loss of generality, because shared objects can be allocated in an ancestor heap, and many
programs, including all determinacy-race-free programs, are disentangled [Westrick et al. 2020].
The primary focus of work on disentanglement so far has been to develop the dynamic memory
architecture consisting of a tree of heaps and do not offer any guarantee on space usage.
Nearly all of the work on parallel functional languages organizes memory as a hierarchy of

heaps; this general idea goes back to 1990s [Alpern et al. 1990; Krishnamurthy et al. 1993; Numrich
and Reid 1998; Yelick et al. 1998]. More recent work includes Sequioa [Fatahalian et al. 2006] and
Legion [Bauer et al. 2012]. These techniques are also remotely related to region-based memory
management in the sequential setting [Fluet et al. 2006; Grossman et al. 2002; Hanson 1990; Ross
1967; Schwartz 1975; Tofte and Talpin 1997; Walker 2001], which allows objects to be allocated in
specific regions, which can be deallocated in bulk.

Parallelism: Procedural and Functional Approaches. Many parallel programming languages based
on procedural, object-oriented, and functional programming languages have been developed. Sys-
tems extending C/C++ include Cilk/Cilk++ [Blumofe et al. 1995; Frigo et al. 2009; Intel Corporation
2009a], Intel TBB [Intel Corporation 2009b], and Galois [Kulkarni et al. 2007; Pingali et al. 2011].
The Rust language offers a type-safe option for systems-level programming [Rust Team 2019]; the
type system of Rust is powerful enough to outlaw races statically [Jung et al. 2018a], though it is
difficult (if not impossible) to implement efficient parallel algorithms, such as the algorithms that we
consider in our evaluation, by using safe primitives only. Systems extending Java include Fork-Join
Java [Lea 2000], deterministic parallel Java [Bocchino, Jr. et al. 2009], and Habanero [Imam and
Sarkar 2014]. X10 [Charles et al. 2005] is designed with concurrency and parallelism from the
beginning and supports both imperative an object-oriented features. The Go language is designed
from grounds up with concurrency in mind.

Because these systems support memory effects or destructive updates, programs written in them
are vulnerable to determinacy or data races [Allen and Padua 1987; Emrath et al. 1991; Mellor-
Crummey 1991; Netzer and Miller 1992; Steele Jr. 1990]. Such races are notoriously difficult to
avoid and can be harmful [Adve 2010; Bocchino et al. 2011, 2009; Boehm 2011]. Data races may be
detected or even be eliminated via dynamic techniques (e.g., [Cheng et al. 1998; Feng and Leiserson
1999; Kuper and Newton 2013; Kuper et al. 2014b; Mellor-Crummey 1991; Raman et al. 2012; Steele
Jr. 1990; Utterback et al. 2016], and static techniques including type systems (e.g., [Bocchino et al.
2011; Flanagan and Freund 2009; Flanagan et al. 2008]). More generally, verifying properties of
concurrent programs has emerged as an active research area, and in particular many variants of
separation logic have been developed (e.g., [Bizjak et al. 2019; Jung et al. 2018b; Reynolds 2002;
Turon et al. 2013; Vafeiadis and Parkinson 2007]).

Functional programming languages typically offer substantial control over side effects, usually
via powerful type systems [Gifford and Lucassen 1986; Kuper and Newton 2013; Kuper et al. 2014a;
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Launchbury and Peyton Jones 1994; Lucassen and Gifford 1988; Park et al. 2008; Peyton Jones and
Wadler 1993; Reynolds 1978; Steele 1994; Terauchi and Aiken 2008], which help programmers to
avoid race conditions. Notable functional parallel languages include several forms of a Parallel
ML language [Acar et al. 2015; Fluet et al. 2008, 2011; Guatto et al. 2018; Raghunathan et al. 2016;
Westrick et al. 2020], the MultiMLton project [Sivaramakrishnan et al. 2014; Ziarek et al. 2011], the
SML# project [Ohori et al. 2018], and the work on several forms of Parallel Haskell [Chakravarty
et al. 2007; Keller et al. 2010; Marlow and Jones 2011].

11 DISCUSSIONS

All the techniques proposed in this paper assume disentanglement. Because disentanglement is
implied by determinacy-race-freedom [Westrick et al. 2020], it can be checked by using a known
race-detector. But disentanglement is more general: programs with determinacy- and data-races are
disentangled, as long as concurrently executing threads do not see each other’s memory allocations.
It turns out many interesting parallel programs do exactly that: they use data races but remain
disentangled. For example, parallel graph algorithms use data races for improved efficiency but
remain disentangled. A natural question thus is how to check for disentanglement. At this time,
there are no known efficient algorithms or implementations for disentanglement checking.
In this paper, we considered fork-join programming model. This model has proved a good fit

for compute intensive applications, ranging from scientific computing to graph processing and
machine learning. There are other applications, however, that benefit from more expressive forms
of parallelism. For example, interactive parallel applications are more naturally expressed with
futures [Acar et al. 2016b; Halstead 1984] and would be difficult to express by using fork-join
only [twi 2011; fac 2015; Muller et al. 2020; Muller and Acar 2016; Muller et al. 2017, 2018a,b]. It
would be interesting to extend these techniques to more general models of computation including
futures. Such an advance would require generalizing the disentanglement theory to futures first.
This in-and-of-itself seems nontrivial, because futures allow for more complex synchonizations
between concurrent threads, which may break disentanglement. Assuming that it is possible to
extend disentanglement for futures, the memory management and heap scheduling techniques
would also need to be extended accordingly. In addition to futures, another form of parallelism
that is popular is the łasync-finishž style, which can be viewed as a generalization of fork-join
that allows for any number of parallel computations to join (instead of just two). This is a mild
generalization and there does not appear to be significant difficulties in extending our techniques
to support asynch-finish style.

12 CONCLUSION

We present techniques for provable space and work efficient memory management for nested-
parallel languages. Our techniques apply both to purely functional and imperative programs that
use destructive updates as long as they are disentangled. The key technical innovation behind
our techniques is to partition the memory into smaller heaps and schedule (assign) these heaps to
processors in such a way that each processor may collect its own partition of heaps independently
of the others by using one of many garbage collection algorithms available in the literature. Our
techniques are quite general and permit many different implementations. We present such an
implementation and show that it delivers good performance.
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