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Parallel Programming

Imperative fast

mutability
manual memory management
non-determinism

can parallel functional
programming be
fast and scalable .

immutability
automatic memory management
determinism

functional slow?




Sequential

Parallel




Sequential

Parallel

Is there a better way?




Nested Parallelism (Fork-Join)

e classic and popular

e MultiLisp, OpenMP, Cilk, Intel TBB, TPL (.NET), Rayon (Rust),
Java Fork/Join, Habanero Java, X10, NESL, parallel Haskell,
Futhark, Manticore, parallel ML, ...

fork (spawn) join (sync)
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Nested Parallelism (Fork-Join)

map £ A =
let
B = newArray

map’ 1 7]
case -
| 0O =>

| 1 =>

| n =

(Length A)

1+ n/2

in (map’ i m || map’ m J);

in

map’ 0 (length A);

B
end
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Disentanglement definition

throughout execution, each thread may only
use data allocated by itself or ancestors

Olnln @ OO Loggd
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Disentanglement definition

throughout execution, each thread may only
use data allocated by itself or ancestors

L

13



Disentanglement definition

throughout execution, each thread may only
use data allocated by itself or ancestors

0] /
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Disentanglement definition

throughout execution, each thread may only
use data allocated by itself or ancestors

L
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theorem

all race-free programs are disentangled
N

Proof technique:
* use computation graphs for definitions
* |dentify single-step invariant:

e if location X accessible without a race,
then neighbors(X) are in root-to-leaf path

e carry invariant through race-free execution
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Disentanglement in Practice

Ligra

PBBS

BFS

betweenness centrality
Bellman-Ford

k-Core

Page Rank

maximal independent set
eccentricity estimation

quickhull

deduplication

sorting

minimum spanning forest
suffix array

Barnes-Hut

nearest neighbors

ray casting
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all disentangled

(and likely others too)

many benign data races
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Is there a better way?







Hierarchical Memory Management

S _>/©\©_> .



Hierarchical Memory Management

IEI fork I join I : :
merge heaps
into parent

fresh empty heaps
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Hierarchical Memory Management

e disentanglement: no cross pointers




Hierarchical Memory Management

e disentanglement: no cross pointers

e subtree collection

reorganize,
compact, etc.

inside subtree -

: naturally
i parallel

25
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MaPLe

e full ML language, extended with fork-join library

val par: (unit —> ‘a) x (unit —> ‘b) —> ‘a *x ‘b

- /

e used by 500+ students at Carnegie Mellon University each year

e implementation detalls:
e extends MLton

e completely new runtime system

e subtree collection integrated with scheduling

github.com/mpllang/mpl

“— Y,

e Cheney-style copying/compacting
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Experiments: Scalability

712

fib
samplesort
mergesort
dmm
dedup
histogram
barnes-hut
all-nearest
mst

SEREYRE

36
Processors
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54

72

benchmarks
ported to Parallel ML

Speedups relative
to MLton



Experiments: Sorting Shootout

Iy 17
C++ std::sort 8.8 =
Cilk samplesort 7.9  0.16
Cilk mergesort 12.7 0.24
MPL (Ours) mergesort 18.8  0.37
Go samplesort 27.2  0.52
Java mergesort 11.0 0.63
Haskell/C mergesort 10.6 1.3
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2nd fastest, only behind Cilk



Summary

e disentanglement

e natural and widespread

* question
can disentanglement be treated as a

correctness condition?

e future work _
static and dynamic checking . github.com/mpllang/mpl y

e hierarchical memory management
parallel collection

e MaPLe (MPL)
real, practical implementation
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