Disentanglement
Ip
Nested-Parallel Programs

Sam Westrick
Carnegie Mellon University

Joint work with
Rohan Yadav, Umut Acar, and Matthew Fluet

Parallel Programming

Imperative fast

mutability
manual memory management
non-determinism

can parallel functional
programming be
fast and scalable .

immutability
automatic memory management
determinism

functional slow?

Sequential

Parallel

Sequential

Parallel

Is there a better way?

Nested Parallelism (Fork-Join)

e classic and popular

e MultiLisp, OpenMP, Cilk, Intel TBB, TPL (.NET), Rayon (Rust),
Java Fork/Join, Habanero Java, X10, NESL, parallel Haskell,
Futhark, Manticore, parallel ML, ...

fork (spawn) join (sync)

A —) A

Nested Parallelism (Fork-Join)

map £ A =
let
B = newArray

map’ 1 7]
case -
| 0O =>

| 1 =>

| n =

(Length A)

1+ n/2

in (map’ i m || map’ m J);

in

map’ 0 (length A);

B
end

Nested Parallelism (Fork-Join)

map £ A =
let
B = newArray

map’ 1 7]
O case -
| 0O =>
| 1 =>
| n =

(Length A)

1+ n/2

in (map’ i m || map’ m J);

in

map’ 0 (length A);

B
end

Nested Parallelism (Fork-Join)

map £ A =
let
B = newArray

map’ 1 7]
case -
| 0O =>

| 1 =>

| n =

(Length A)

1+ n/2

in (map’ i m || map’ m J);

in

map’ 0 (length A);

B
end

Nested Parallelism (Fork-Join)

map £ A =
let
B = newArray

map’ 1 7]
case -
| 0O =>

| 1 =>

| n =

(Length A)

1+ n/2

in (map’ i m || map’ m J);

in

map’ 0 (length A);

B
end

Nested Parallelism (Fork-Join)

map £ A =
let
B = newArray

map’ 1 7]
case -
| 0O =>

| 1 =>

| n =

(Length A)

1+ n/2

in (map’ i m || map’ m J);

in

map’ 0 (length A);

B
end

10

Nested Parallelism (Fork-Join)

map £ A =
let
B = newArray

map’ 1 7]
O case -
| 0O =>
| 1 =>
| n =

(Length A)

1+ n/2

in (map’ i m || map’ m J);

in

map’ 0 (length A);

B
end

11

Disentanglement definition

throughout execution, each thread may only
use data allocated by itself or ancestors

Olnln @ OO Loggd

12

Disentanglement definition

throughout execution, each thread may only
use data allocated by itself or ancestors

L

13

Disentanglement definition

throughout execution, each thread may only
use data allocated by itself or ancestors

0] /

14

Disentanglement definition

throughout execution, each thread may only
use data allocated by itself or ancestors

L

15

16

-
-

...---

theorem

all race-free programs are disentangled
N

Proof technique:
* use computation graphs for definitions
* |dentify single-step invariant:

e if location X accessible without a race,
then neighbors(X) are in root-to-leaf path

e carry invariant through race-free execution

17

Disentanglement in Practice

Ligra

PBBS

BFS

betweenness centrality
Bellman-Ford

k-Core

Page Rank

maximal independent set
eccentricity estimation

quickhull

deduplication

sorting

minimum spanning forest
suffix array

Barnes-Hut

nearest neighbors

ray casting

18

all disentangled

(and likely others too)

many benign data races

19

-
-

...---

Is there a better way?

Hierarchical Memory Management

S _>/©\©_> .

Hierarchical Memory Management

IEI fork I join I : :
merge heaps
into parent

fresh empty heaps

23

Hierarchical Memory Management

e disentanglement: no cross pointers

Hierarchical Memory Management

e disentanglement: no cross pointers

e subtree collection

reorganize,
compact, etc.

inside subtree -

: naturally
i parallel

25

T

P
.t
st
.®
.®
«®
Y
.
.
.
.
R
.
*
o
*
*
G
D
D
o
n
[]
n
u
-
.
.
*s
*
.
.
.
.
*
*
“
-
-
-
.
*a
a
Ty
vy
Ty
t‘---..
*
»
N
n
n
.
.
.
*

aE NNy
«® Y

S .
“apnnnt

T

/

R4
L4
4
L4
L/
L]

Py
e .
*

4
&4
L
L J
L
L J
L]
L]
L]
L]
L]
L]
L]
[]
-n .
0“ .’ '
* 3]
* % .
)
n
]
L]
]
u
]
]
]
[]
[}
[]
[]
n
L]
[]
n
[]
L]
N
L]
L]
]
L]
L]
L]
L]
L]
]
L]
[]
]
]
]
]
L]
L]
L]
L]

.
.
-
u
n
n
]
]
]
L}
L}
L]
L
L
N
L
]
]

L4
4
Lé
L4
L2
L]
L
L]
LJ
LJ
L J
L
L
L
L]
L]
L]
L]
L}
L]
L]
L]
L]
L}
L]
L]
L]
L}
L |
n
L}
L
L]

AT

.

*

ws®

.
**

L4
. *
*
0‘ “

.

20

.
.
-
u
L]
n
]
]
]
L]
L]
L]
L
L
L]
L J
]
]
L}
L]
L]
L]
L]
]
]
]
]

L4
L Z
L
L J
L}
L
L}
L}
L]
L]
L}
L]
[]
L]
L]
[]
[]
[]
[]
]
[]
n
L |
L |
[]
[]
L]
L]
]
L |
L |
n
L |
L |
[|
L |
L |
n
[]
L |
L |
L |
L]

L)

Py
o *

4

L4

L4

L]
L 4
L/
L
L}
L}
L}
L}
L]
L]
L}
L]
n
[]
L |
L]

..y

*

0‘ .‘
K .

/\

L4
.....
L]
lllllllllllllllll
L]

B N,
*

‘0
*
4

L4
&4
L
LJ
&
L J
L]
L]
L]
L]
L]
L]
L]
[]
[]
L}
n
[]
[]
[]
[}
]
[}
[]
[}
[}

.
.
-
|]
n
n
]
]
]
L]
L}
L]
L
L
L]
L J
]
]
L}
L]
L]
N
L]
]
]
]
|]

MaPLe

e full ML language, extended with fork-join library

val par: (unit —> ‘a) x (unit —> ‘b) —> ‘a *x ‘b

- /

e used by 500+ students at Carnegie Mellon University each year

e implementation detalls:
e extends MLton

e completely new runtime system

e subtree collection integrated with scheduling

github.com/mpllang/mpl

“— Y,

e Cheney-style copying/compacting

27

Experiments: Scalability

712

fib
samplesort
mergesort
dmm
dedup
histogram
barnes-hut
all-nearest
mst

SEREYRE

36
Processors

28

54

72

benchmarks
ported to Parallel ML

Speedups relative
to MLton

Experiments: Sorting Shootout

Iy 17
C++ std::sort 8.8 =
Cilk samplesort 7.9 0.16
Cilk mergesort 12.7 0.24
MPL (Ours) mergesort 18.8 0.37
Go samplesort 27.2 0.52
Java mergesort 11.0 0.63
Haskell/C mergesort 10.6 1.3

29

2nd fastest, only behind Cilk

Summary

e disentanglement

e natural and widespread

* question
can disentanglement be treated as a

correctness condition?

e future work _
static and dynamic checking . github.com/mpllang/mpl y

e hierarchical memory management
parallel collection

e MaPLe (MPL)
real, practical implementation

30

