
Disentanglement
in

Nested-Parallel Programs
Sam Westrick

Carnegie Mellon University

Joint work with

Rohan Yadav, Umut Acar, and Matthew Fluet

1

Parallel Programming

2

functional

imperative
mutability

manual memory management

non-determinism

immutability

automatic memory management

determinism

slow?

fast

?can parallel functional
programming be
fast and scalable

3

mutator collectormemory

memory

mutator

mutator collector

mutator
mutator

mutator
mutator

mutator
mutator

mutator

Sequential

Parallel

memory

collector

4

mutator

mutator
collector

mutator
mutator

mutator
mutator

mutator
mutator

collector
collector

collector

collector
mutator

Sequential

Parallel

Is there a better way?

mutator collectormemory

Nested Parallelism (Fork-Join)
• classic and popular

• MultiLisp, OpenMP, Cilk, Intel TBB, TPL (.NET), Rayon (Rust),  
Java Fork/Join, Habanero Java, X10, NESL, parallel Haskell,  
Futhark, Manticore, parallel ML, …

5

fork (spawn) join (sync)

6

map f A =
 let
 B = newArray (length A)

 map’ i j =
 case j-i of
 | 0 => ()
 | 1 => B[i] := f (A[i])
 | n =>
 let m = i + n/2
 in (map’ i m || map’ m j);
 ()
 end
 in
 map’ 0 (length A);
 B
 end

Nested Parallelism (Fork-Join)

7

map f A =
 let
 B = newArray (length A)

 map’ i j =
 case j-i of
 | 0 => ()
 | 1 => B[i] := f (A[i])
 | n =>
 let m = i + n/2
 in (map’ i m || map’ m j);
 ()
 end
 in
 map’ 0 (length A);
 B
 end

Nested Parallelism (Fork-Join)

8

Nested Parallelism (Fork-Join)
map f A =
 let
 B = newArray (length A)

 map’ i j =
 case j-i of
 | 0 => ()
 | 1 => B[i] := f (A[i])
 | n =>
 let m = i + n/2
 in (map’ i m || map’ m j);
 ()
 end
 in
 map’ 0 (length A);
 B
 end

9

Nested Parallelism (Fork-Join)
map f A =
 let
 B = newArray (length A)

 map’ i j =
 case j-i of
 | 0 => ()
 | 1 => B[i] := f (A[i])
 | n =>
 let m = i + n/2
 in (map’ i m || map’ m j);
 ()
 end
 in
 map’ 0 (length A);
 B
 end

10

Nested Parallelism (Fork-Join)
map f A =
 let
 B = newArray (length A)

 map’ i j =
 case j-i of
 | 0 => ()
 | 1 => B[i] := f (A[i])
 | n =>
 let m = i + n/2
 in (map’ i m || map’ m j);
 ()
 end
 in
 map’ 0 (length A);
 B
 end

11

Nested Parallelism (Fork-Join)
map f A =
 let
 B = newArray (length A)

 map’ i j =
 case j-i of
 | 0 => ()
 | 1 => B[i] := f (A[i])
 | n =>
 let m = i + n/2
 in (map’ i m || map’ m j);
 ()
 end
 in
 map’ 0 (length A);
 B
 end

12

Disentanglement definition 
throughout execution, each thread may only  
use data allocated by itself or ancestors

13

Disentanglement definition 
throughout execution, each thread may only  
use data allocated by itself or ancestors

14

Disentanglement definition 
throughout execution, each thread may only  
use data allocated by itself or ancestors

15

Disentanglement definition 
throughout execution, each thread may only  
use data allocated by itself or ancestors

16

fully general

disentangled

race-free

mutation-free

17

theorem
all race-free programs are disentangled

Proof technique:

• use computation graphs for definitions

• identify single-step invariant:

• if location X accessible without a race, 
then neighbors(X) are in root-to-leaf path

• carry invariant through race-free execution

many benign data races

18

all disentangled

(and likely others too)

Disentanglement in Practice
BFS

betweenness centrality

Bellman-Ford

k-Core

Page Rank

maximal independent set

eccentricity estimation

quickhull

deduplication

sorting

minimum spanning forest

suffix array

Barnes-Hut

nearest neighbors

ray casting

Ligra

PBBS

19

fully general

disentangled

race-free

mutation-free

20

memory

collectormutator

mutator
collector

mutator
mutator

mutator
mutator

mutator
mutator

collector
collector

collector

collector
mutator

Is there a better way?

21

memory

collectormutator

mutator
collector

mutator
mutator

mutator
mutator

mutator
mutator

collector
collector

collector

collector
mutator

22

Hierarchical Memory Management

fork join

23

Hierarchical Memory Management

fork

merge heaps
into parent

fresh empty heaps

join

24

Hierarchical Memory Management
• disentanglement: no cross pointers

naturally
parallel

25

Hierarchical Memory Management
• disentanglement: no cross pointers

• subtree collection

reorganize,
compact, etc.
inside subtree

26

MaPLe
• full ML language, extended with fork-join library

• used by 500+ students at Carnegie Mellon University each year

• implementation details:

• extends MLton

• completely new runtime system

• subtree collection integrated with scheduling

• Cheney-style copying/compacting 

27

github.com/mpllang/mpl

val par: (unit -> ‘a) * (unit -> ‘b) -> ‘a * ‘b

28

Experiments: Scalability

benchmarks
ported to Parallel ML

Speedups relative
to MLton

29

Experiments: Sorting Shootout

2nd fastest, only behind Cilk

30

Summary

github.com/mpllang/mpl

• disentanglement

• natural and widespread

• question 
can disentanglement be treated as a  
correctness condition?

• future work 
static and dynamic checking

• hierarchical memory management 
parallel collection

• MaPLe (MPL)  
real, practical implementation 

