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Parallel Programming
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functional

imperative
mutability

manual memory management

non-determinism

immutability

automatic memory management

determinism

slow?

fast

?can parallel functional 
programming be 
fast and scalable
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Is there a better way?
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Nested Parallelism (Fork-Join)
• classic and popular


• MultiLisp, OpenMP, Cilk, Intel TBB, TPL (.NET), Rayon (Rust),  
Java Fork/Join, Habanero Java, X10, NESL, parallel Haskell,  
Futhark, Manticore, parallel ML, …
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fork (spawn) join (sync)
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map f A = 
  let 
    B = newArray (length A) 

    map’ i j = 
      case j-i of 
      | 0 => () 
      | 1 => B[i] := f (A[i]) 
      | n => 
          let m = i + n/2 
          in (map’ i m || map’ m j); 
             () 
          end 
  in 
    map’ 0 (length A); 
    B 
  end

Nested Parallelism (Fork-Join)
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Disentanglement definition 
throughout execution, each thread may only  
use data allocated by itself or ancestors
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fully general

disentangled

race-free

mutation-free
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theorem 
all race-free programs are disentangled

Proof technique:


• use computation graphs for definitions


• identify single-step invariant:


• if location X accessible without a race, 
then neighbors(X) are in root-to-leaf path


• carry invariant through race-free execution



many benign data races
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all disentangled 

(and likely others too)

Disentanglement in Practice
BFS

betweenness centrality

Bellman-Ford

k-Core

Page Rank

maximal independent set

eccentricity estimation

quickhull

deduplication

sorting

minimum spanning forest

suffix array

Barnes-Hut

nearest neighbors

ray casting

Ligra

PBBS



19

fully general

disentangled

race-free

mutation-free



20

memory

collectormutator

mutator
collector

mutator
mutator

mutator
mutator

mutator
mutator

collector
collector

collector

collector
mutator

Is there a better way?



21

memory

collectormutator

mutator
collector

mutator
mutator

mutator
mutator

mutator
mutator

collector
collector

collector

collector
mutator



22

Hierarchical Memory Management

fork join
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Hierarchical Memory Management

fork

merge heaps 
into parent

fresh empty heaps

join
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Hierarchical Memory Management
• disentanglement: no cross pointers 



naturally 
parallel
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Hierarchical Memory Management
• disentanglement: no cross pointers 

• subtree collection

reorganize, 
compact, etc. 
inside subtree
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MaPLe
• full ML language, extended with fork-join library


• used by 500+ students at Carnegie Mellon University each year


• implementation details:


• extends MLton


• completely new runtime system


• subtree collection integrated with scheduling


• Cheney-style copying/compacting 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github.com/mpllang/mpl

val par: (unit -> ‘a) * (unit -> ‘b) -> ‘a * ‘b
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Experiments: Scalability

benchmarks 
ported to Parallel ML 

Speedups relative 
to MLton
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Experiments: Sorting Shootout

2nd fastest, only behind Cilk
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Summary

github.com/mpllang/mpl

• disentanglement


• natural and widespread


• question 
can disentanglement be treated as a  
correctness condition?


• future work 
static and dynamic checking 

• hierarchical memory management 
parallel collection


• MaPLe (MPL)  
real, practical implementation 


